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INTRODUCTION 

Stress Corrosion Cracking of Brass In 

Ammoniacal Solutions 

The brass Industry has been troubled since Its beginning with the 

stress corrosion cracking (SCC) of various forms of brass. SCC was 

called "season cracking" because of Its resemblance In appearance to 

the cracking of wood during seasoning; however, this term Is misleading 

since SCC is a result of internal strains localized in effect by cor

rosive action [1]. It was known that brasses stored in a dry, and 

clean atmosphere, although carrying high internal strains, cracked 

only after a long time, while a damp atmosphere was especially active 

in producing such cracking, particularly if it carried ammonia vapor 

from decaying organic matter [2], Past experience indicated also that 

cracking was more frequent in brasses carrying a higher percent of 

zinc, Zn. The effect of Zn-content on the number and kind of phases 

in brass alloy is shown in the phase diagram of brass. Figure 1. Al

though it has been generally accepted that corrosion is an inevitable 

factor, the few articles that appeared in the beginning of this cen

tury were all devoted to studying the effect of internal stresses and 

how to release them [3,4]. Thompson and Tracy [5] observed that the 

addition of zinc, phosphorous, arsenic, antimony, silicon, nickel or 

aluminum to copper results in alloys that are subject to SCC in a 

moist ammoniacal atmosphere. They identified two modes of cracking, 

Intercrystalllne and transcrystalline. However, no failure mechanisms 

were discussed. 
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Extensive systematic study of SCC of brass was initiated by Matt-

sson's work, published in 1961 [6]. By that time, the potential/pH 

diagrams were introduced by Pourbaix [7]. The potential/pH diagram of 

a certain metal, in some systems, defines the stability regions of 

different possible forms of this metal produced by its possible chemi

cal and electrochemical reactions with the system at different values 

of potential and pH. The theoretical basics of the potential/pH dia

gram construction are discussed in Appendix A. The potential/pH dia

grams for most of the elements were constructed by Pourbaix; however. 

It Is Important to note that they are restricted to binary systems of 

pure elements with water, e.g., Cu-H^O, Zn-H^O. So, where additional 

species (e.g., NH^, CN~) are present, the potential/pH diagram must be 

modified to Include the possible reactions of these species with the 

element under consideration. 

Mattsson [6] constructed the potentlal/pH diagrams for the ternary 

systems: Cu-NHg-HgO and Zn-NHg-H^O (Figures 2a,b). He used these dia

grams to explain his observations of the relationship between the time-

to-crack of brass samples in ammoniacal copper sulphate solutions and 

the pH of the solution. The chemical reactions used by Mattsson to con

struct the potential/pH diagrams are shown in Appendix B. To initiate 

the brass cracking, stress was created in the brass samples by shaping 

them into loops, where only the outer surface of the loop was under 

tensile stress. The disadvantage of the loop method, used also by 

Thompson [8], is the Inability to determine or vary the applied stresses. 
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The brass (63 Cu-37 Zn) loops were immersed in solutions of different 

pH and observed visually for crack appearance. All the solutions had 

the same composition of 1 g-mole of NH^ [added as NHg solution or 

(NH^)2S0^, in proper ratio to adjust the required pH] +0.05 g-atom/L 

of Cu, added as CuS0^"5 HgO. Mattsson identified two kinds of solu

tions , tarnishing and nontarnishing, according to the appearance of 

the sample after the test. In tarnishing solutions, 6.3<pH<7.3, a 

black surface coating of Cu^O was observed. Time-to-cracking, t^, was 

found to decrease with increasing pH, passing through a minimum at pH= 

7.3; however, no cracking was identified at pH=2. The cracking mode 

was intergranular in tarnishing solutions, and transgranular in non

tarnishing solutions [3.9<pH<5.5 and 7.7<pH<11.2]. The anodic reaction 

was assumed to be zinc dissolution at all pH values, in addition to cop

per dissolution at 7.8^pH^1.2. The cathodic reaction was supposed to 

2+ 
be the reduction of Cu -complexes at pH values where these complexes 

2+ 
are stable, and the reduction of Cu -ions elsewhere. Hoar and Scully 

[9] observed the importance of yielding of the metal (upon stress) for 

the appearance of a large increase in dissolution current, and postu

lated an electrochemical mechanism for the SCC propagation. Takano and 

Shimodaira [10] observed the SCC of a-brass (70/30) in Mattsson's solu

tions at pH=7.4, but not at pH=2.0 or 10.0. They suggested that the 

cracking observed by Mattsson at pH=10.0 was due to mechanical failure 

caused by the thinning of the sectional area of the specimen by severe 

corrosion. This is supported by the fact that the rate of potential drop 

of the redox potential at that pH was the highest value reported by Matt-
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sson indicating the destruction of air-formed film and exposure of bare 

metal to more dissolution [11]. The general corrosion at high pH values 

was also confirmed by Hoar and Booker [12]. The authors also proposed 

that the tarnish film was the result of anodic dissolution of zinc from 

the heavily cold-worked surface, and the anodic conversion of the "acti

vated" porous copper into Cu^O. Polarization measurements showed that 

the tarnish film had a more inhibiting effect on corrosion, but a more 

favorable one on SCO. It was also found that stresses lower than the 

yield stress still caused cracking at longer times, which was disputed 

by Logan [13], who assumed that stresses should be higher than the 

yield stress for SCC to occur. 

To account for crack initiation, the authors [12] suggested that 

very narrow zones of stressed "disarranged metal" dissolve anodically 

in preference to stressed "well-ordered" metal, to produce sub-micro

scopic fissures which act as local stress raisers. At 5^pH<7.4, it 

is probable that the concomitant oxide film formation hinders such 

preferential dissolution from the body of the grain far more than at 

the grain boundaries, which thus become the major points of crack ini

tiation, leading to intergranular cracking. Moreover, Zn emergence 

is very high in cold-worked metal, since Zn diffusion is easier than 

in annealed metal. Thus, any point on the surface, where micro-local

ized cold work has occurred, will (in early stages of corrosion) be

come poor in Zn and rich in disarranged Cu, whereby further mechanical 

deformation of weakened metal (under stress) occurs, and anodic oxida

tion of Cu into CUgO will be much stimulated. Finally, when local 
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stresses at the bottom of the sub-microfissure increase, yielding at 

the advancing edge of the crack will occur, leading to: 

a. Stimulation of anodic emergence of Zn 

b. Mechanical fracture and anodic oxidation of the 
remaining Cu 

c. Disruption in the Cu^O film 

d. Provision of a supply of easily anodlcally attacked 
material, from the freshly produced metal surface 

Therefore, several factors will assist a metal atom at the advancing 

edge (and not at the crack side) to leave, therefore, propagation of 

the crack occurs. Although Hoar and Booker [12] used Mattsson's poten-

tial/pH diagrams after revising them; Johnson and Leja [14] relocated 

the stability regions of CuO, Cu^O, and Zn(0H)2 on the diagram, and La-

hiri [15] suggested the presence of a second stability region for Cu^O 

at higher pH. 

Hoar et al. [16] confirmed the second stability region of Cu^O at 

a higher pH value. They revised the potential/pH diagram for the 

second time, taking into consideration the oxidation of NH^ to NO^ Ion, 

and found that simultaneous production of solid CUgO and soluble 

CuCNHg)^^ was also allowed at pH=11.5, in addition to the previously 

known formation at 7.2<pH^7.4 

The authors concluded that the bright black film formed on brass 

2+ 
(and not on pure Cu) in solutions containing Cu ions (and not in ab-

2+ 
sence of Cu ions) and at the specific pH range, 6.4^pH^7.3, was 

"nearly amorphous, nonstolchiometric cuprous oxide doped with Zn." 

The use of potentlal/pH diagrams of pure metals to predict the 

behavior of alloys was not restricted to a-brass, but extended to other 
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cases, e.g., copper-nickel alloys, where the superimposed potential/pH 

diagrams of both Cu and Ni were used to interpret the behavior of their 

alloys [17]. However, the superposition technique was disputed by some 

authors [18], on the basis that pure metals behave differently in the 

alloyed state. 

Pugh and Westwood [19] prepared solutions of concentrated aqueous 

ammonia (~15 N) containing various concentrations of cupric complex ions 

to avoid the tendency of Mattsson's solutions to form precipitates (ba

sic copper sulfate). Two compositions of Pugh solutions have been used: 

1) Tarnishing solutions containing 8 g/L of Cu-powder 
in 13 N aqueous ammonia 

2) Nontarnishing solutions containing 1 g/L of Cu-powder 
in 15 N aqueous ammonia 

The authors assumed that in oxygenated ammoniacal solutions the dissolu

tion of Cu takes place through the autocatalytic reaction: 

+ Cu^urface " ZtCaWH,),]» + MH3 

+ O2 + NH, 

2[Cu(NH3)^]^"*' 

2+ The important role of Cu -complexes in SCC process was discussed by 

several authors [20-22j. 

In his first review, Pugh [23] summarized the dissolution process 

and SCC mechanisms of a-brass in both tarnishing and nontarnishing 

aqueous ammoniacal solutions. Cracking in tarnishing solutions was 

supposed to occur discontinuously by the repeated formation and rup
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ture of the tarnish film. In nontarnishing solutions the cracking 

mechanism was proposed to involve failure by a single-stage process 

involving preferential anodic dissolution at dislocations created by 

the applied stress. 

The structure and mechanism of formation of the tarnish film was 

first studied by Forty and Humble [24], who stressed the important 

role of tarnish film, consisting mainly of CUgO, in the SCC process. 

McEvily and Bond [25] concluded that a localized cracking process 

would be avoided if the film formed is nonprotective so it would per

mit general corrosion to occur instead of a localized attack, or is 

strong enough to sustain the applied stress without rupturing. Al

though the kinetics and role of tarnish formation were further studied 

by many authors [26-36], Jenkins and Durham [37] were the first to 

identify a more protective thin film on a-brass, by electron diffrac

tion, prior to the tarnish layer formation. Leidheiser and Kissinger 

[38] analyzed the liquid within the propagating crack, using the tech

nique developed by Brown et al. [39], and observed a very high Zn 

content, indicating more Zn dissolution at the crack tip. They also 

observed that the internal surfaces of the crack were covered by a 

thin film, which decreased in thickness from the outer surface to the 

crack tip. The absence of a tarnish film at the crack tip conflicted 

with the idea that SCC is a consequence of the formation of a brittle 

oxide which repetitively cracks once it reaches appreciable thickness. 

This conflict was further stressed by other authors [40,41]. It may 

be useful at this point to differentiate between the "tarnish film" 
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and the "thin film." The "tarnish film" is a film resulting in a visi

ble discoloration of the metal surface, and therefore has a thickness 

of the order of (or greater than) the wavelength of light. The "thin 

film" is a film not resulting in visible discoloration, therefore, 

detectable by means other than visual observation, e.g., electrochemi

cal means. Auger spectroscopy, ellipsometry, or electron diffraction. 

The tarnish film and the thin film may have the same composition, e.g., 

Cu^O. 

The formation of a thin film before the tarnish layer (Figure 3) 

was confirmed by Pinchback et al. [42], who used Auger electron spec

troscopy (AES) to show that a thin oxidized layer penetrated to the 

leading edge (Figure 3) of the stress corrosion crack fomned in a-brass 

(70/30) exposed to Pugh's tarnishing solution. The formation of a 

thicker tarnish film, depleted in Zn, trailed well behind the lead

ing edge, thus, playing no apparent role in crack propagation. No 

bulk depletion of Zn was detected in the alloy at the stress corrosion 

crack leading edge, and no evidence was found for the discontinuous 

crack propagation observed before. 

The formation of Cu^O oxide film, depleted in Zn, on a-brass 

exposed to Pugh's tarnishing solution was also found by Gabel et al. 

[43], who proposed a dissolution-precipitation mechanism where both 

Cu and Zn dissolved at the metal-tarnish interface, then a part of 

Cu reprecipitated as CUgO, while the ions of Zn diffused through the 

porous film to the bulk solution. An outer layer of CuO was found in 

specimens exposed for long periods. 

In Pugh's nontarnishing solution, Pinchback et al. [44] found 
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that the fracture surfaces in a-brass (70/30) were brass colored, and 

the cleavage-like features extended to the site of crack initiation, 

thus, characterizing the entire SCC surface and challenging the dissolu

tion model proposed before, for this case. Preferential zinc dissolu

tion was observed on SCC surfaces; but no evidence was found for oxide 

formation. 

At this point, it may be relevant to summarize the present under

standing of SCC process according to Pugh's second review [45] and the 

latest publications. 

In tarnishing solutions 

Tarnish film formation The tarnish formation is not a single 

stage as thought before, but involves several steps: 

1) The formation of a thin protective film of Cu^O (~200 A). 
The onset of tarnishing was indicated by active-passive 
transition in the anodic polarization curves, 

2) local breakdown of the thin film leading to rapid anodic 
dissolution of the substrate and the precipitation of a 
thick porous layer of CU2O. The breakdown was indicated 
by the increasing currents at larger anodic potentials. 

3) The formation of an outer layer of CuO (of thickness > 
5 ym). 

While the growth kinetics of the film were not strongly dependent 

on Zn content, the rate of film breakdown increased with increasing Zn 

content, as was indicated by higher currents at more anodic potentials. 

Recent observations [46-49] are in accordance with the above mechanism. 

Mechanisms of cracking The intergranular mode of failure is 

common in all alloys in the annealed conditions, while transgranular 

failure is observed in the heavily worked Cu-30 Zn alloy. 
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a. Crack tip 
b. Thin film 
c. Tarnish film 

Simplified diagram of a stress corrosion crack and 
surface films formed in tarnishing solutions 

a. Intergranular 
b. Transgranular 

Different modes of stress corrosion cracking [11] 
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Mechanism of intergranular cracking The repeated tarnish 

formation-rupture mechanism is modified by replacing the thick film 

by the protective film, which is in fact present at the crack tip. 

A competition is envisioned between anodic dissolution and repassiva-

tion at the crack tip, and the potential should be high enough to al

low rapid anodic dissolution at the crack tip, as well as the forma

tion of a surface layer apart from the tip, but not so high that pas

sivation of the crack tip occurs. This condition, fulfilled only by 

certain environments, accounts for the specific nature of solutions 

causing SCC. The dependence of SCC susceptibility on Zn content (time-

to-fracture decreases with increasing Zn content) can be attributed to 

the zinc effect on the two processes of anodic dissolution and repas-

sivation. 

The structure and composition of grain boundaries might cause 

slower repassivation kinetics at the grain boundaries than at the grain 

surfaces (Figure 4a), leading to an intergranular cracking path. So, 

the slower repassivation kinetics is the main cause, and intergranular 

penetration is its secondary effect. However, intergranular penetra

tion may play an important role in crack initiation. 

Mechanism of transgranular cracking This is supposed to be 

the same as the transgranular cracking (Figure 4b) in nontarnishing 

solutions, which will be dealt with later. 

In nontarnlshlns solutions 

Dissolution process The system is under concentration polari

zation, where anodic dissolution rates of Cu and Zn are determined by 
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2+ 
the transport of the predominant cathodic species, ex. [Cu(NH^)^] 

to the surface. Brown, loosely-adherent, and nonprotective films are 

commonly observed; however, the origin of these films has not been 

established. Large rates of active anodic dissolution are possible, 

producing faceted surfaces. No preferential Zn dissolution was ob

served on a macroscopic scale, but the possibility of shallow dezinci-

fied layers exists. Pinchback et al. [44] provided evidence for de-

zincification at the transgranular stress corrosion fracture surfaces; 

however, no studies have been made on unstressed samples. 

Mechanisms of cracking According to the dissolution model pro

posed before, cracking occurs when stressed samples undergo rapid anodic 

dissolution. While the cupric complex ions are necessary to provide a 

sufficiently rapid dissolution rate at open circuit potentials, the 

presence of these complex ions is not essential if anodic potentials 

are applied. Finally, the preferential dissolution at dislocations 

(cellular or planar) will lead to either intergranular or transgranular 

crackings However, it is difficult to reconcile this dissolution model 

with the observation of cleavage-like features of the entire SCC surface 

reported 144,50-51]. If transgranular failures occur by brittle mechani

cal fracture, the cause of embrittlement can be attributed to one of 

the following models: 

1) The adsorption model: in which species adsorb and inter
act with strained bonds at the crack tip, causing reduc
tion in bond strength and permitting brittle fracture 
[52-56]. 

2) H2-embrittlement model: as in other stress corrosion 
failures which exhibit cleavage-like fracture surfaces; 
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however, the hydrogen source is not evident in the 
case of a-brass. Although the anodic reaction: 

Cu + 2NH^ = [Cu(NH^)g]'^ + + e 

was supposed [57]; no evidence of hydrogen evolution was 
found during dissolution or cracking. Bertocci [58] dis
cussed the hydrogen embrittlement model recently, but 
without drawing any decisive conclusions. 

3) Dezincification model: which might produce an embrittled 
zone at the crack tip, leading to a discontinuous brittle 
fracture. Dezincification was evident at transgranular 
stress corrosion fracture surfaces [44]. 

Cleava # ike fracture has been observed in heavily cold-worked 

Cu-30 Zn in tarnishing solutions, and the mechanism seems to be the 

same as before. However, the fracture surfaces in cold-worked speci

mens exhibit parallel markings, suggesting discontinuous cracking, which 

has not been reported in the nontarnishing case. Actually, if failure 

is due to cleavage, then discontinuous propagation should be expected, 

since cleavage cracks propagate at velocities of sound waves, whereas 

the overall rate of transgranular cracking is relatively small. A dis

continuous model of cracking is consistent with BL-embrittlement and 

dezincification, but not with adsorption, where continuous cracking at 

a rate controlled by critical species transport to the crack tip, is 

predicted. 

In the case of intergranular cracking in nontarnishing solutions, 

the actual mechanism is not known. If it is assumed to be the same 

as in transgranular cracking, then the change in the crack path can 

be related to the dislocation behavior. The occurrence of intergranu-
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lar see of unalloyed copper in nontarnishing solutions rules out the 

dezincification model for that case at least. Moreover, if a discon

tinuous fracture surface can be detected, the only possible mechanism 

will be the hydrogen embrittlement one. It is interesting to note that 

the cleavage-like features, which led to the rejection of the dissolu

tion model, have as yet received little attention. 

Stress Corrosion Cracking of Brass in 

Nonammoniacal Solutions 

Although see of a-brass has been investigated mainly in Mattsson's 

and Pugh's ammoniacal solutions, failure in nonammoniacal solutions 

has also been reported. During his investigation of SCC of a-brass 

in ammoniacal CuSO^ solutions, Mattsson [6] observed that ammonia was 

not included in the cracking mechanism in the pH range 3.9-4.7, where 

no cupric ammine complex was stable, and cathodic reaction appeared to 

2+ 
be the reduction of Cu ions. To confirm this, Mattsson investigated 

the behavior of a-brass in the same pH range of a solution in which 

+ + NH^ was replaced by Na ion. He observed transgranular microcracks 

after 160 hours, compared to visual transgranular cracks after 60-100 

hours in ammoniacal solution, and concluded that, in ammoniacal solu

tions, ammonia had a stimulating effect. 

Green and Pugh [59] investigated the SCC of a-brass, using el-

lipsometric techniques, in citrate and tartrate solutions at pH 10.3 

2+ 
and 13.5, respectively. Intergranular cracking, formation of Cu 
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complex ions, and formation of tarnish films indicated the similarity 

to see in tarnishing ammoniacal CuSO^ solutions. Ellipsometric tech

niques, which measure the average rate of tarnish growth on the grain 

surface, could not provide a direct indication of the SCC behavior, 

since SCC susceptibility is related to the degree of intergranular 

penetration by the tarnish film. 

Pickering and Byrne [60] reported the SCC of Cu-30 Zn in acid sul

fate solution (1 N Na^SO^ + O.Ol N H^SO^) at pH=2.0 during elongation. 

The fracture path was mainly along grain boundaries, with some second-

2+ 
ary cracking through the grains. They concluded that ammonium and Cu 

complex ions were not necessary for SCC of brass. However, the test 

was conducted on Cu-30 Zn specimens anodically polarized at 0.24 V 

(SHE) and not at open circuit potential. In the presence of anodic 

2+ 
dissolution, Cu complex ions are not essential, since their role at 

open circuit potential is to provide an efficient cathodic reaction, 

hence, promoting a rapid anodic dissolution. Moreover, the authors 

admit that the occurrence of SCC in these experiments most likely stems 

from the application of dynamic, rather than static loading. A partial 

check of this was done by straining a specimen to a fixed deformation, 

then exposing it to the test solution, with all other conditions fixed. 

In this case, no cracking was observed. Generally, the dynamic load

ing is a more severe test for SCC than the static one. 

The susceptibility of admiralty brass (71 Cu-28 Zn-1 Sn) to SCC 

in 1 N Na^SO^ solution was tested over a pH range of 1.3-»-12.7 by 
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Kawashlma et al. [61] at open circuit potential and anodic polariza

tion conditions, but using the dynamic technique of slow-strain rate 

at 1.5 X 10 ̂  sec They showed that admiralty brass was less sus

ceptible to see than Cu-30 Zn, since no SCC of admiralty brass was 

observed under the same conditions (pH=2 and 240 mVg) for which Cu—30 

Zn cracked [60]. Moreover, SCC was not observed in any of the speci

mens tested at open circuit potential. The authors assumed that the 

crack velocity at open circuit potential might be so small that no de

tectable penetration occurred in the time of the experiment. A slower 

strain rate might have allowed more time for crack penetration. This 

assumption supports the idea of using a constant load technique (static 

technique) in SCC studies. On the other hand, SCC occurred at anodic 

potentials, where the overpotential value varied with the pH, and 

minimum overpotential was required in the range 4^HjçlO. The crack

ing mode was always transgranular with considerable branching, especial

ly at high anodic potentials. Cracking severity decreased with a de

crease in sulfate ion concentration, and no cracking occurred at a con

centration of 10~^ N. The conclusion was that SCC of admiralty brass 

occurred in nonammoniacal solutions over a wide range of pH depending 

on the oxidizing conditions produced by anodic polarization. The in

crease in severity with increasing potential favors anodic dissolution, 

rather than Hg-embrittlement, as the cause of cracking. Since the sam

ple was annealed and zinc content was higher than 18%, and observed 

cracking was transgranular, then the solution should be nontarnishing. 
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However, the authors did not refer to the presence of the brown, non-

protective film usually formed in these cases. 

Admiralty brass was again tested for SCC in aq. CuSO^ solution by 

Pinchback et al. [62]. Admiralty tube specimens were totally immersed 

in different concentrations (0.05-»• 0.5 M) of aq. CuSO^ solution at room 

temperature with no external stress for 500 hours. All specimens de

veloped transgranular cracks during the test period. The SCC fracture 

surfaces showed cleavage-like features, as observed before for a-brass 

in nontarnishing ammoniacal solutions, in conflict with the dissolution 

mechanism. Auger electron spectroscopy (AES) revealed a higher con

centration of Sn (~5 times higher) at the leading edge of the SCC than 

on either the mechanical fracture or the brown filmed area. Inert gas 

ion sputtering near the crack leading edge showed the Sn rich layer to 

be about 100 atomic layers thick. Since Sn is known to be an effective 

catalyst poison for Hg-recombination reaction, and the SCC surface 

showed cleavage-like features, the authors proposed that a Hg-embrit-

tlsmeiit mechanism was operating. However, no explanation was given 

for the origin of high Sn concentration at the crack leading edge. 

Possible reasons mentioned were the segregation of Sn, or the redeposi-

tion of dissolved Sn near the crack leading edge. Sn was found to 

form a Sn02 layer in admiralty brass immersed in oxygenated acidic 

NaCl solution, in addition to a solid solution of Cu and Sn (Stannate, 

or CuSnO^) [63]. While selective dissolution of the electronegative 

components of the alloy (Zn and Sn) takes place in the initial stage, 

the uniform dissolution of the alloy sets in afterwards [64]. 
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Syrett and Parkins [65] studied the effect of different concen

trations of Sn or As on the SCC behavior of a-brass (80/20) in Matt-

sson solutions. It was found that the addition of Sn or As increased 

the resistance of a-brass to SCC, and the mode of cracking changed 

gradually from intergranular to transgranular with increasing per

centage of Sn or As. At pH=7.3, an adherent black Cu^O coating was 

formed in most cases, while at pH=11.3 every specimen had two surface 

films, one completely covering the other. The outer coating, white or 

light grey, was only weakly adherent and could be rubbed off the under

lying, dark-colored coat with ease. The outer film is suggested to 

consist largely of ZnO or Zn(OH)g, possibly with oxides of Sn or As. 

The potential-time curves showed a smooth rise in potential in the 

first 20 minutes of immersion for 80/20, 1% Sn, and 0.7% As alloys, 

but the higher Sn and As brasses showed an arrest or fall in potential 

during the same period, indicating more resistance to SCC. The authors 

suggested that Sn or As affected the film formation or character to 

such an extent that sites within the grains became as susceptible as 

the grain boundaries, so the cracking mode changed from an intergranu

lar to transgranular one. No data were available for the concentra

tion changes of Cu, Zn and Sn along the crack path, and accurate com

positions of formed coatings were not given. 

Kawashima et al. [66] investigated the SCC of admiralty brass (71 

Cu-28 Zn-1 Sn-0.06 As) in several nonammoniacal solutions at pH = 8. 

The SCC susceptibility was found to decrease in the order 
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NO^ > NOg >ClO^ > SO^ > MoO^ > CI > WO^ , with no actual cracking in 

HCO^, B^Oy , CrO^ , and HPO^ solutions. All the tests were conducted 

at a controlled anodic potential of 300 mV^ and the authors used the 

dynamic test (slow strain rate technique). The potential of 300 mV^ 

was chosen due to its proximity to the Cu^O/CuO equilibria in neutral 

solutions (6<pH<8) on the Pourbaix diagram. The cracking was always 

transgranular with considerable branching in SO^ , NG^» and NO^ solu

tions. Anodic polarization curves suggested an active dissolution 

of the metal in aggressive solutions, while early passivation of the 

metal took place in other solutions where no SCC was observed. 

Gouda et al. [67] reported intergranular SCC of a-brass (72/78) 

in 1 M, 0.1 M NaClOg solution at open circuit potential, and transgranu

lar SCC at anodic potentials, using constant strain rate technique. 

In a less concentrated solution (0.01 M), anodic polarization was re

quired and the cracking mode was transgranular. A discontinuous de-

zinc if led layer was formed in stressed specimens in relatively concen

trated solutions, especially under anodic polarization. The authors 

suggested a mechanism of conjoint processes based on dissolution and/or 

embrittlement models. Similar SCC results were also reported by 

Maria and Scully [68]. Burstein and Newman [69] reported the suscepti

bility of a-brass to SCC in 1 M nitrite solution due to the reduction of 

_ 4-
NOg to NH^ which accumulates within the cracks. Later, Newman and 

Sleradzki [70] used the acoustic emission technique to confirm the dis

continuous nature of the TGSCC of brass in 1 M NaNO^ solution. The 
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transgranular mode of cracking was also reported by Alvarez et al. [71]. 

Electrochemical polarization technique was used, in few instances, 

as a tool to predict SCC in different solutions. Since the reaction 

rate at the crack tip is considerably faster than those at all other 

exposed surfaces, then the activity of the crack tip and sides can be 

reflected in differences in currents obtained in fast (~1 V/min) and 

slow (~ 10 mV/min) sweep rate potentiokinetic polarization measurements. 

SCC is predicted to occur in the potential range where the current 

2 values differ by ~1 mA/cm in the two sweeps. Although accurate pre

dictions of the potential range in which SCC occurred was better achieved 

with rapid straining electrode tests than with potentiokinetic measure

ments, the latter were useful in giving the first indication of crack 

susceptibility. Parkins and Holroyd (72), using this technique, showed 

that a-brass (70/30) was susceptible to cracking in solutions of sodium 

acetate, formate, tartrate and hydroxide, in certain ranges of potential 

and pH. Intergranular cracking was observed when the potential and pH 

employed fell within the stability domain of CUgO. At higher potentials, 

transgranular cracking was observed. 

Stress Corrosion Cracking of Pure Copper 

Pugh et al. [73] were the first to report the SCC of pure Cu in 

nontarnishing ammoniacal solutions containing large concentration of 

Cu-complexes (15 N oxygenated aqueous ammonia +2.5 g/L Cu-powder) 

using the constant load technique. No tarnishing of the sample was 
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observed, and the failure was partially intergranular and partially 

transgranular (ductile). However, pure copper didn't undergo SCC 

under constant load in tarnishing solutions [5,74]. The report of 

SCC of pure Cu in nontarnishing solutions [73] was later disputed by 

Uhlig and Duqette [75], who observed intergranular corrosion with an 

average penetration equal in depth on the specimen surface away from, 

as well as at the region of maximum strain, and also equal in depth 

on the compression side. They concluded that the failure reported by 

Pugh et al. was the result of Intergranular corrosion in which the 

grain boundaries were deeply etched on both sides of the foil used. 

Later, Escalante and Kruger [76] reported the intergranular SCC of 

pure Cu at constant load, in Cu-acetate, but not in Cu-sulfate solution. 

The solution was found to be tarnishing, and the brittle film rupture 

mechanism was assumed. Pednekar et al. [77] reported the failure of 

commercially pure Cu in naturally aerated 1 M NaNO^ solution, using 

the slow strain rate technique. The solution should be tarnishing since 

Cu^O film was detected on the crack sides; however, the cracking 

mode was transgranular. The authors proposed film rupture bad anodic 

dissolution at the slip steps as the cracking mechanism. Similar re

sults were reported by Suzuki and Hisamatsu [78], who observed the 

transgranular SCC of pure Cu under constant load stress in dilute am

moniacal solutions. A thick tarnish film of Cu^O was formed, and 

the brittle tarnish rupture mechanism was assumed. It is apparent that 

the literature dealing with SCC of pure copper is characterized by many 
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conflicting experimental results and correspondingly conflicting inter

pretations. 

Summary of Stress Corrosion Cracking 

Studies: The Unsolved Problems 

During the early studies of SCC of brasses in ammoniacal solutions, 

the constant load technique and open circuit potential state were the 

most favored experimental conditions. The SCC of brass has been well-

observed in Mattsson's and Pugh's solutions, where the anions are sul

fate or hydroxide; however, there was no systematic study on the effect 

of different anions of ammonium salts on the SCC susceptibility. The 

formation of ammonium hydroxide has been blamed for the SCC of brasses 

in humid atmospheres; however, other ammonium salts, such as chloride 

and nitrate, are also being formed in the present urban atmospheres, 

where industrial alloys are extensively used. Thus, a systematic study 

of the effect of these ammonium salts on SCC is necessary to understand 

SCC in these solutions. Brown [79] reported that SCC occurs in ammoni

acal solutions and all other species which can react with copper to pro

duce the cupric-ammonium complexes or structurally similar complexes. 

However, cracking has been observed in Mattsson's solution at pH values 

where such complexes are not stable [6]. If complexing effect is neces

sary for SCC of brass, then no SCC should occur in noncomplexing solu

tions. On the other hand, if complexing effect is a sufficient condi

tion for SCC, then SCC should occur in any complexing solution, unless 

there are certain requirements to be met. A detailed study of SCC of 
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brass in complexing and noncomplexing solutions should reveal the role 

of complexing effect in SCC process. 

Later on, the SCC studies were extended to nonammoniacal solu

tions, but most of the investigations were conducted using dynamic load 

techniques with different strain rates and potentiostatic anodic po

tentials to enhance the SCC process. The effect of the strain rate on 

the dissolution process was reported by many authors [80-85]. According 

to Parkins [86], the dissolution at the crack tip depends not only upon 

the electrochemical conditions but also upon the rate at which bare 

metal is created at the crack tip by plastic strain. Maximum cracking 

can be expected at an intermediate rate in slow strain rate tests. In 

constant load tests, the crack propagation will continue only when the 

strain rate at the crack tip exceeds the minimum rate required. On the 

other hand, the potentiostatic anodic polarization will increase the 

anodic dissolution of the sample under investigation. In general, the 

conditions of constant load and open circuit potential (used earlier) 

are more relevant to service conditions. Therefore, these conditions 

should be used during the SCC investigation to eliminate any probabili

ty of enhanced dissolution or failure due to strain. 

Electrochemical polarization curves and Tafel plot technique have 

been used extensively to clarify the corrosion mechanisms and calculate 

the corrosion parameters [87-95]. Several computer programs were de

veloped to replace the analytical methods and facilitate the lengthy 

calculations [96-103]. However, the application of electrochemical po-
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larizatlon techniques In SCC studies has been mostly qualitative with 

little effort to relate the calculated corrosion parameters to the re

actions taking place on the electrode surface. Moreover, very few 

studies have attempted to develop suitable methods for SCC prediction. 

There is no doubt that electrochemistry plays an important role in 

SCC process, since a stressed sample would not fail or crack in dry at

mospheres. A careful combination of results obtained by different 

electrochemical techniques should reveal the type and extent of chemical 

reactions taking place during SCC process, and lead to better under

standing of the SCC mechanisms. It is also expected that the SCC sus

ceptibility in each solution will be related to the electrochemical be

havior of the alloy under investigation. Thus, there may be a simple 

and effective electrochemical test which can be used to predict SCC in 

different solutions. 

Finally, the controversy over the SCC of pure copper in different 

aqueous solutions needs to be resolved; the first step should be repeti

tion of previously reported studies but under common experimental condi

tions. This should be followed by the investigation of SCC behavior of 

pure copper in other solutions under these same conditions and generali

zation of the results. 

The present work was conducted under constant load and open circuit 

potential conditions to study the following. 

1. The effect of different anions of ammonium salts on the 
SCC of brass. Mattsson's nontarnishing solution was also 
investigated for the sake of comparison. 
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2. The see behavior of brass in different (complexing and 
noncomplexing) nonammoniacal solutions. 

3. The application of electrochemical methods to predict, 
study, and identify (with the help of surface analysis 
techniques) the SeC mechanism(s). 

4. The see behavior of pure copper in different aqueous solu
tions . 



www.manaraa.com

27 

EXPERIMENTAL 

Material 

Stress corrosion cracking samples 

Tensile stress specimen Samples of total length of 10 cm and 

0.5 cm in diameter were machined using a-brass rods of composition 80% 

Cu - 20% Zn (atomic weight %). The samples were annealed at 400°C for 

1 hr in argon atmosphere. Each sample was electropollshed, in an elec

trolyte bath [60 ml methanol + 30 ml nitric acid (70%)] at 0°C and con

trolled potential of 30 volts, for one minute. The sample was then 

washed in ultrasonic methanol bath and dried in warm air. 

Loop specimens Loops were prepared from brass rods 0.15 cm 

in diameter, 60 cm in length, and composition of 59.54 Cu-38.57 Zn-

0.32 Fe-0.82 Sn (weight %). The brass rods were bent around a 3/8-inch 

diameter mandrel to produce the loops. The loops were chemically 

polished in an acid mixture [40 ml glacial acetic + 25 ml phosphoric 

(70%) + 10 ml HNOg (60%)] then washed in an ultrasonic water bath and 

dried in nitrogen atmosphere. Each rod produced up to eight loops. 

Electrochemical tests samples 

a-brass (80/20) samples Cylindrical samples of 0.70 cm diame

ter and 0.4 cm in thickness were machined and used as the working elec

trode in rotating disc electrode. 

Cylindrical samples of 0.95 cm diameter and 0.2 cm in thickness 

were used as the disc electrode in rotating ring disc electrode (RRDE) 

with platinum ring. 
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The discs were polished manually using silicon carbide paper (600 

type) then three grades of alumina (1 li, 0.3 p, then 0.05 y) on polish

ing cloth. The samples were then washed in an ultrasonic water bath 

and dried in a nitrogen atmosphere. 

aS'-brass (60/39) samples Rods of brass (60/39) 24 cm long 

and 0.15 cm diameter were fixed in glass tubes (17 cm long and 0.5 cm 

diameter) using silicone rubber. The upper end of the wire (~ 5 cm) 

was cleaned, abraded, and used for electrical connection. The lower 

2 end (~ 2 cm) was all covered, except a total area of 0.5 cm , with 

silicone rubber. The produced electrode was chemically cleaned in 

the acid mixture mentioned above. Pure copper and zinc electrodes were 

prepared in the same way. 

Solutions 

Three sets of solutions were studied. The first set includes 

solutions reported before to cause stress corrosion cracking of brasses 

[6,62,66,67], e.g., ammoniacal copper sulfate, nitrate, nitrite, and 

chlorate solutions. The second set includes solutions not necessarily 

reported to cause SCC of brasses but with anions known to form com

plexes with Cu^^ and Zn^^ ions, e.g., pyrophosphate solution (stability 

constants are shown in Appendix C). The third set includes ammonium 

salt solutions with different anions, namely, ammonium (nitrate, sulfate, 

2+ 
carbonate, and chloride) solutions with and without 0.05 M Cu ions. 

All solutions were prepared from reagent grade chemicals and qua-

druply distilled water. 
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Measurement Techniques 

Stress corrosion cracking tests 

Tensile stress test This test was conducted using an Instron 

tensile stress machine and the tensile stress specimens of a-brass 

(80/20). The machine was equipped with a Wheatstone bridge driven by 

D.C. power supply and connected to a time recorder to determine the 

time-to-failure in each solution. The tensile specimens were pre-

stressed in air to a fixed point beyond the ultimate tensile stress 

value by applying a constant crosshead speed of 0.05 inch/hr, and a 

full load of 2400 lb. - The carriage was then stopped and the specimen 

kept under constant load while completely immersed in the solution 

under test. The samples were removed from the solution after failure 

or after seven days, which was first. 

Loop specimen tests The two ends of each loop were connected 

by an insulated copper wire, and the loops were suspended in 100-ml 

beakers containing 50 ml of each solution under test and isolated from 

the atmosphere. The loops were observed periodically for any cracks. 

Two loops were used in each solution and the average time-to-cracking 

was calculated. 

Electrochemical tests 

The following tests were conducted using the computerized corro

sion system Model 332 (Figure 5) (EG&G Princeton Applied Research). 

Corrosion potential, measurements The corrosion poten

tial of brass samples in each solution was measured every minute for a 
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Fig. 5. The corrosion measurements system Model 332, 
containing Potentiostat/Galvanostat Model 
273, and an Apple lie Computer 
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total of 180 minutes. In most cases, the corrosion potential was al

most constant within this period. 

Tafel plot measurements The cathodic then anodic polarization 

of the sample were conducted in the potential range of ±250 mV w.r.t. 

the corrosion potential at a scan rate of 0.05 mV/s. The slopes of 

both cathodic and anodic Tafel lines were calculated from the straight 

portions of the cathodic and anodic branches. The point of intersec

tion of both lines determines the corrosion potential and corrosion 

current, i^^^. The calculations were mostly done by the computer pro

gram, Parcalc, which is based on the Stern and Geary model of polarized 

electrodes [104]. 

Cyclic polarization measurements The sample potential was 

scanned at 1 mV/s from cathodic to anodic potentials, then back to the 

cathodic region. The potential range used was ±250 mV w.r.t. the cor

rosion potential. 

All the electrochemical tests mentioned above were conducted under 

identical conditions of stirring to minimize the mass transfer effects 

[105]. 

Rotating ring disc measurements These tests were conducted 

to detect intermediate Cu -complexes produced during the corrosion 

process at the brass disc in ammoniacal complexlng solutions. The 

potential of the disc electrode was scanned in the anodic region w.r.t. 

the corrosion potential, while the platinum ring potential was fixed 

at +0.5 Vgjjg. 

All electrochemical measurements were conducted using a saturated 
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Calomel electrode as the reference and a graphite electrode as the 

counter electrode. 

Surface analysis tests 

Energy-dispersive x-ray analysis (EDAX) This technique was 

used to identify the composition of the crack and mechanically-frac-

tured surfaces. Facilities for performing it are included in the 

Scanning Auger Multiprobe, PHI 600, and were used for this purpose. 

Scanning electron microscope (SEM) A Cambridge S-200 scanning 

electron microscope was used to determine the surface characteristics 

of produced SCC surfaces. 

Optical microscopy technique A Zeiss Axiomat Metallograph 

was used to determine the mode of stress corrosion cracking in differ

ent solutions, e.g., intergranular or transgranular. 
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RESULTS AND DISCUSSION 

Brass in Ammoniacal and Ammonium Salts 

Aqueous Solutions 

Stress corrosion cracking tests 

The loop samples of a^f-brass (60/39) were found to crack in hy-

2+ 
droxide and nitrate solutions with and without Cu -ions, but not in 

2+ 
carbonate or chloride solutions with and without Cu -ions. The results 

are summarized in Table 1. On the other hand, the tesntile stress speci

mens of a-brass (80/20) failed in hydroxide solution, but not in nitrate 

or sulfate solutions. The results of a-brass are summarized in Table 2. 

The results show that a-brass (80/20) is less susceptible to SCC 

than aB'-brass (60/39) at open circuit potential under static load. 

Both brasses are susceptible to SCC in Mattsson's solution (1 M 

NH^OH + 0.05 M CuSO^). However, while t^ of a3-brass in ammonium — 

copper nitrate solution is half that in Mattsson's solution, a-brass 

did not fail in ammonium-copper nitrate solution within a period 

five times that needed to fail in Mattsson's solution. This supports 

earlier findings [59] that the susceptibility of brass to SCC increases 

with increasing zinc content. 

The loop test proved to be a simple and efficient test for the 

simultaneous study of brass cracking in several solutions. The good 

agreement, between the two samples used in each solution, proves a 

satisfactory reproducibility, similar to that reported before [6,8]. 

It is also worthy to notice that the ratio of times-to-crack, in hy-

2+ droxide and sulfate solutions with Cu ions, is 31.5/5.25 = 6, com-
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Table 1. Time-to-crack of aB-brass (60/39) loop specimens in various 
aqueous solutions at 25®C 

E ^ E ^ cor 
Solution PH 

C 

(hrs) «"'SHE' 

1 M NH^OH + 0.05 M CuSO^^ 10.90 5.25 -129 

1 M NH^OH'^ 11.40 48 -233 

1 M NH^NO^ + 0.05 M Cu(N0^)2 3.60 2.75 292 

1 M NH^NOg 5.80 48 48 

1 M (NH^)^SO^ + 0.05 M CuSO^ 3.90 31.50 257 

1 M (NH^)2S0^ 5.90 NC*^ 123 

1 M (NH^)2C0^ + 0.05 M CuSO^^ 8.50 NC - 38 

1 M (NH^)2C0g^ 8.60 NC -190 

1 M NH^Cl + 0.05 M CuClg 3.50 NC 105 

1 M NH^Cl 5.65 NC - 96 

^Average time-to-crack. 

^Corrosion potential (relative to standard hydrogen electrode). 

c 2+ 
Solutions forming Cu -complexes. 

^No cracking in 7 days. 

pared to 90/15.56 = 5.78 in Mattsson's work [6], 

The progression of tlme-to-crack, t^, shows that the presence of 

2+ Cu ions increases the SCC susceptibility. Many authors [12,15,19, 

23,106] have claimed that. In the present study, brass cracked in hy-

2+ droxide solutions, where Cu -complexes are stable, and also in nitrate 
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Table 2. Time-to-failure of a-brass (80/20) tensile stress specimens 
in various aqueous solutions at 25"C 

PH ^f " Gcor " 
Solution 

1 M NH^OH + 0.05 M CuSO^^ 10.9 30 -102.6 

1 M NH^NO^ + 0.05 M 3.60 NF^ 

1 M (NH^)2S0^ + 0.05 M CUSO^ 3.90 NF 

^Time-to-failure. 

^Corrosion potential (relative to standard hydrogen electrode). 

c 2+ Solutions forming Cu -complexes. 

'^No failure in 7 days. 

2+ solutions, where Cu -complexes are not stable in the portions of poten-

tial/pH diagram studied. On the other hand, brass didn't crack in solu

tions containing (carbonate solutions) and free of (sulfate solution) 

2+ Cu -complexes. This observation suggests that while the presence of 

2+ Cu ions is necessary but not sufficient for SCC to occur, the complex-

ing effect is neither necessary nor sufficient for SCC. Bertocci et al. 

[51] observed recently the SCC of a-brass (70/30) in the presence of Cu^-

2+ complexes only and concluded that Cu -complexes are not necessary for 

SCC. It should be noticed that these results were obtained using the 

slow-strain rate technique. Using the constant load technique, the pres-

2+ + 
ent work shows that neither Cu -complexes nor Cu -complexes are neces-

2+ sary for SCC as long as Cu ions can furnish the required cathodic 
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species. 

The Immunity to SCC of brasses In sulfate solution can be at

tributed to the formation of a Cu^O film, which prevents more dissolu

tion, in addition to the inhibiting effect of sulfate ion previously 

reported [107]. 

2+ 
The immunity in carbonate solution containing Cu ions may be 

due to the high general and uniform corrosion which occurs in presence 

of these ions, instead of the pit formation required to initiate SCC 

process. The large increase in corrosion rate, when sulfate was re

placed by carbonate anion in cupric ammoniacal solutions, was observed 

before by Sedzimir and Bujanska [108]. On the other hand, the Immuni-

2+ ty in Cu -free carbonate solution may be the result of insufficient 

corrosion rate in this solution. Lees and Hoar [109] reported that, in 

Mattsson's solution at pH=8.9, no SCC occurred due to uniform dissolu

tion of the sample surface. Similarly, in chloride solutions, the brass 

immunity to SCC can be attributed to the high general and uniform cor-

2+ 
rosion in the presence of Cu Ions and to insufficient corrosion rate 

in their absence. Moreover, the inhibiting effect of CI ion on SCC of 

brass in Mattsson's solution has been reported by many authors [8,67, 

107,110]. 

Electrochemical tests 

Corrosion potential, « measurements Corrosion potential vs. 

time curves, for aB-brass (60/39) in different ammonium salt solutions, 

2+ 
are shown in Figures 6-9. Among the solutions containing Cu ions. 
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Figure 6. Corrosion potential vs. time for 
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solutions (where SCC was observed) 
at 25"C 
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the least noble potentials are observed in carbonate and hydroxide 

2+ solutions, where Cu ions are complexed. In solutions which are 

24-originally Cu -ions-free, the least noble potentials are observed in 

carbonate, hydroxide and chloride solutions, where dissolved copper 

is complexed in the first two and negligible in the third solution. 

In other solutions, the potential is very close to that for a standard 

2+ Cu/Cu electrode potential, indicating either the pretest introduction 

2+ of Cu ions or appreciable copper dissolution. The numerical values 

of corrosion potentials after three hours are shown in Tables 1 and 2. 

The change of corrosion potential with time can be used in some cases 

to confirm electrochemical reactions taking place at the electrode sur-

24-face. For example, considering the Cu ions-containing solutions, 

the shift of into the noble direction in hydroxide solution in

dicates the increase of metallic ion concentration in the solution, 

while the almost constant E value in nitrate and sulfate solutions cor 

indicates a balanced dissolution and deposition of metallic ions (Figure 

6). However, no direct relation between the corrosion potential and 

the see susceptibility could be drawn, which means that corrosion po

tential alone cannot be used to identify, predict, or monitor SCC. It 

was concluded elsewhere [111], that measurements of E^^^ vs. time alone 

are not reliable indicators of relative corrosion rate when oxygen re

duction is the cathodic process. 

Tafel plots results The experimental Tafel plots were used 

to calculate the Tafel line slopes and corrosion parameters by means 

of the Parcalc program which is based on the Stern and Geary equation 
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[104]; 

nB F „ -nB F ^ 
'•app = ^cor 

where : 

2 1 = the external current density, yA/cm 
app 

2 
1^^^ = corrosion current density, yA/cm 

n = # electrons involved in the reaction 

B^,B^ = anodic and cathodic symmetry coefficients 

F = Faraday's constant, 96500 coulomb/equiv. 

ri = overvoltage potential, in volts 

R = universal gas constant, 8.3 goule/mole "K 

T = temperature, °K 

The Parcalc program final results are: 

E(I=0); corrosion potential in mVggg 

Cathodic Tafel (slope) in mV 

Anodic Tafel (slope) in mV 

9 
I ; corrosion current in uA/cm" 
corr 

Corrosion rate (MPY); millinch per year 

2 CHI : a numerical measure for the fitting of the experimental 
data to the theoretical model 

In some cases, where more than one Tafel line appears in the same re

gion, the calculated Tafel line slope has no relation to any of the 

reactions taking place, a case reported before by Stern [112]. In 

2 these cases, where the value of CHI is also high, manual measurements 

of Tafel slopes are used. 
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Tafel slopes and corrosion parameters are used to predict all the 

possible cathodic and anodic reactions. The prediction is based on: 

1. The corrosion potential, E , should always lie between 
the cathodic and anodic reaction potentials. 

2. The cathodic and anodic reaction potentials are obtained 
from the corresponding potential/pH diagrams. As an 
approximation, the diagrams of CU-H2O-NH3 and Zn-H20-NHg 
constructed by Mattsson [6] are used. 

3. Transfer coefficients, and are calculated from 
Tafel line slope according to: 

° F^(slSe) 

The values of a^a reported as 1/2 for elementary 
one-electron reactions and 3/2 for several divalent 
metals [113]. 

4. The exchange current for each reaction is calculated 
according to the formula [113]. 

icor = ^oa " Iqc «xp (-^) O) 

where : 

i ,i = anodic and cathodic exchange current density, 
•"= A/cm2 

= transfer coefficients 

d>* « corrosion potential, E ^ cor 

(j)" ,(j)® = standard reduction potentials for anodic 
^ and cathodic reactions 

5. Coupling several simultaneous cathodic reactions with the 
anodic reaction produces a corrosion rate controlled by 
the cathodic reaction with the largest rate. The corro
sion potential would lie nearer to the potential of the 
reaction (anodic or cathodic) with the faster rate (higher 
exchange current, or lower polarizability) [113,114]. 

The calculation results in each solution are discussed in the following. 

Table 3 summarizes the results obtained for all the solutions under test. 
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Table 3. Electrochemical reactions of otB-brass (60/39) in ammoniacal and ammonium salts solutions 
at 25°C (see Table 1 for pH and E values) 

corr 

Solution 

^cor 

(yA/cm^) 

Anodic 
reaction 

(species to be 
oxidized) *aa 

Cathodic 
reaction 

(species to be 
reduced) a 

cc 

1 M NH^OH -1- 0.05 M CuSO^ 2307 
Cu 
Zn 

0.16 [Cu(NHg)^]^'*' 0.17 

IM NH.OH 
4 

115 
Cu 
Zn 

0.30 0.30 

1 M NH^NO^ + 0.05 M Cu(NOg)^ 6947 Zn 0.44 NO3 

Cu2+ 

0.24 

1 M m, NO. 
4 3 

37 Zn 0.48 NO^ 0.20 

1 M (NH^)gSO^ + 0.05 M CuSO^ 1637 Zn - O2 

Cu^+ 

-

1 M (NH^)^SO^ 33 Zn 0.58 °2 0.40 

1 M (m^)^CO^ + 0.05 M CuSO^ 11973 
Cu 
Zn 0.26 [CUCNH3)^]^"^ 0.24 

1 M (NH^)2C03 89 Zn 0.99 
*2 

0.20 

1 M NH^Cl + 0.05 M CuClg 8999 
Cu 
Zn 

0.55 Cu^* 0.20 

1 M m. Cl 21 Zn 0.98 0- 0.32 



www.manaraa.com

43 

1 M NH^OH + 0.05 M CuSO^ The Tafel plot and Parcalc re

sults are shown in Figure 10. The most probable reactions, along with 

kinetic parameters, are: 

Reactions 

Cathodic: 

0^ + + 4e^40H' 

Og + HgO + Ze^SHOg + OH 

,2+ 

Anodic: 

[Cu + 2^ + e;tCu+ 2NH^ 

[ZnCNH^)^]^"*" + 4H^ + 2e;: Zn + 4NH^ 

Potential 

(V 
i o 

A/cm^ 

0.584 2.2x10 -5 

0.015 0.85x10 
-3 

[Cu(NHg)^] + 2H^ + e;t[Cu(NHg)^4- 2NH^ 0.060 0.64x10 -3 

-0.19 1.7x10 -3 

-1.05 0.89x10 -5 

a 

0.17 

0.16 

2+ Among the possible cathodic reactions, the reduction of Cu -complexes 

is more favorable due to higher concentration and exchange current. On 

the other hand, the Cu dissolution is more favored as the anodic reac

tion due to : 

1. higher exchange current 

2. more appropriate value of transfer coefficient, , to 
Cu (normal value 0.5) than to Zn (normal value 
1.5) 

3. closer anodic reaction potential to the corrosion poten
tial. This means that the anodic reaction should be 
of higher exchange current than the cathodic one. This 
is true only for Cu-dissolution. 

The higher dissolution rate of Cu is further supported by the Tafel 

results for pure Cu and pure Zn in the same solution (Figures 11,12). 
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PARCALC TAFEL MENU 

EXP. NAME:TAP MATSTIR 1 DATA:195 
TECHNIQUE:TAFEL CE VS I] 

RESULTS 

E<I=0) <MV) -382.83 

CATHODIC TAFEL <MV) 359.17 

ANODIC TAFEL (MV> 376.08 

I-CORR (UA/CM'^2) 2307.35849 

CORR RATE (MPY) 1128.24 

CHI ^2 60.03 

-100 

-200 

-300 
A 

Z E( 1=0) 
-400 

-500 

-600 
0 1 2 

10 10 
I (UA/CMA2) 

Figure 10. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M NH,OH + 0.05 M CuSO^ solution at 
25°C 
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PARCALC TAFEL MENU 

EXP. NAMEITAFCU MATSTIRL* DATA:171 
TECHNIQUE:TAFEL CE VS 13 

RESULTS 

E(I=0) <MV> -214.31 

CATHODIC TAFEL (MV) 251.91 

ANODIC TAFEL (MV) 284.66 

I-CORR (UA/CM^2) 1489.42 

CORR RATE (MPY) 1373.31 

CHI ^2 39.81 

160 
m 

£ Et 1=0) 
W 

u 

I (UA/CMA2) 

Figure 11. Tafel plot and Parcalc results for pure copper 
electrode in 1 M NH4OH + 0.05 M CuSO^ solution 
at 25°C and scan rate of 0.5 mV/s 
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PARCALC TAFEL MENU 

EXP. NAME:TAFZN MATSTIR2* DATA:40 
TECHNIQUE;TAFEL CE VS 13 

RESULTS 

T.<I»0) (MV) -298.35 

CATHODIC TAFEL (MV) 218.98 

ANODIC TAFEL (MV) 220.57 

I-CORR (UA/CM^2) 1049.04 

DORR RATE (MPY) 624.39 

-HI ~2 537.76 

E( 1=0) 
W 

320 
W 

I (UA/CMA2) 

Figure 12. Tafel plot and Parcalc results for pure zinc 
electrode in 1 M NH^OH + 0.05 M CuSO^ solution 
at 25"C and scan rate of 0.5 mV/s 
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The results show a higher corrosion current in the case of Cu, 

1 M NH.OH The Tafel plot and Parcalc results are shown 

in Figure 13. The most probable reactions and their kinetic parameters 

are: 

Reaction 

Cathodic: 

Og + ZHgO + AeJZTAOH" 

Og + HgO + + OH" 

Og + ZHgO + + 20H~ 

Anodic : 

[CuCNHg) 2]''" + 2H"^ + e^ Cu+ 2NH, 

Potential 

0.554 

0.0007 

0.007 

-0.400 

[ Zn (NH^) + 4H'^ + 2e^ Zn + 4NH^ -1.050 

A/cm 

1.1x10 
—8 

0.63x10 -5 

0.59x10 -5 

0.21x10 

-8 
1.1x10 

-4 

a 

0.30 

0.30 

Again, Cu-dissolution is more favored than Zn-dissolution for the same 

reasons mentioned before. This is also supported by the observation 

of solution coloration shortly after the sample immersion. The low 

corrosion current can be explained using the potential/pH diagram for 

CU-H2O-NH2 constructed by Johnson and Leja [14], where Cu^O is stable 

at the present solution pH. At higher anodic potentials, Cu^O is oxi

dized to CuO. 

1 M + 0.05 M Cu(NO^)^ Three successive Tafel plots 

(Figure 14) show clearly the presence of two Tafel lines in the cathodic 

region. The Parcalc results (Figure 15) show, as should be expected. 
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PARCALC TAFEL MENU 

EXP. NAME;TAFSTIR AM* DATA;223 
TECHNIQUE:TAFEL EE VS 13 

RESULTS 

E(I=0) (MV) -495 

CATHODIC TAFEL (MV) 201.09 

ANODIC TAFEL (MV) 197.36 

L-CORR <UA/CM'^2) 115.12963 

:ORR RATE (MPY) 57.18 

:HI '^2 38.84 

240 

•320 

•400 

W 
E( 1=0) M 

u 

I (UA/CMA2) 

Figure 13. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M NH^OH solution at 25°C 
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Illl 11II  Illl liir 

450 

300 

150 
U 

150 

T f IIA s wrif tei'iA 

Figure 14. Tafel plots for ag-brass (60/39) electrode in 1 M 
NH.NOo + 0.05 M CU(N03)2 solution,^reproduced at the 
same experimental conditions at 25°C 
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PARCALC TAFEL MENU 

EXP. NAME:TAP AMNITSTIRL* 
TECHNIQUE:TAFEL 

DATA:182 
CE VS I] 

E(I=0) (MV> 

CATHODIC TAFEL (MV) 

ANODIC TAFEL (MV) 

I-CORR (UA/CM'^Z) 

CORR RATE (MPY) 

CHI '•2 

RESULTS 

51.6 

530.01 

165.58 

6947.07548 

3396.93 

720.85 

I 

400 
1 1 1 |iiii| 1 niiiij 1 1 1 1 nil 

300 • • 

200 • / 
100 

E(I=0) . . • • 
• • • • .  

/ 
0 • 

-100 

1( 

1 t t liiiil 
\ 

-100 

1( 
1 

10 10 10 
4 

10 
5 

10 
I (UA/CMaS ) 

Figure 15. Tafel plot and Parcalc results for ag-brass (50/39) 
electrode in 1 M 4- 0.05 M CuCNO»)^ solution 
at 25°C 
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a large difference between the experimental data and the theoretical 

model (based on one reaction in each region). The results obtained by 

manual measurements are shown below along with those obtained by Par-

calc: 

Manual 

Parcalc 

^cor 
mVfl 

293.6 

293.6 

^cor 
yA/cm^ 

8000 

6947 

Anodic Tafel 

mV 

137.5 

163.58 

Cathodic 
Tafel I 

mV 

254.17 

530.01 

Cathodic 
Tafel II 

mV 

123.13 

The most probable cathodic reactions are; 

Reaction 

02 + 4H +4e;Z! 2H2O 

02 + 2H20 + 4e;i^40H" 

NO3 + 4H +3e:ilN0 + H20 

NO3 + 3H +2eZ:HN02 + H20 

2N0% + 4H'^ + 2e^ N,0,. + 2H,0 

Potential 

(V 
1.018 

1.016 

0.674 

0.618 

0.380 

^o 
(A/cm^) 

0.12x10 -4 

0.12x10 -4 

0.27x10 
-3 

0.45x10 
-3 

0.39x10 -2 

a 

0.24 

2+ 
The reduction of Cu to Cu, which occurs at 300 miVg, seems to 

take place at potentials very close to leading to the second 

cathodic Taïel line. 

On the other hand, the most probable anodic reaction is: 

Potential ^ 
Reaction 

Zn^"^ + 2e:;i! Zn 

(V^) 

-0.820 

o 
A/cm^ 

a 

0.58x10 -10 0.44 
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The oxidation of Cu to Cu^O (proposed by Mattsson's diagram) is not con

sistent with the high corrosion current observed. The dissolution of 

2_j. 
Cu to Cu (assumed by Johnson and Lega) will actually be at equilibrium 

since it has almost the same potential (~ 0.30 V^) as the corrosion po

tential. 

The final reactions will be the dissolution of Zn and the reduc-

2+ tion of Cu ions. This is supported by the observed gradual disap

pearance of solution color after the sample immersion. The Zn-dissolu-

tion is also supported by the Tafel experiments for pure Cu and pure Zn 

in the same solution (Figures 16,17), which show a Zn corrosion current 

vastly greater than that of Cu. 

1 M NH^NOj The Tafel plot and Parcalc results are shown 

in Figure 18. The most probable reactions, with their kinetic parame

ters , are ; 

Reaction 

Cathodic: 

02 + 4H'*' + 4e;:r2Hg0 

0^ + 2Hg0 + 4e^40H 

NO^ + 4H +3e;;=:NO + HgO 

2N0^ + 4H 4- 2e;=:NgO^ + 2H2O 

Anodic: 

Zn^"^ + 2e;=: Zn 

Potential 

(Vr) 

0.887 

0.885 

0.508 

0.430 

-0.82 

2 (A/cm ) 

a 

0.68x10 -7 

0.69x10 

,-6 

-7 

1.4x10 

0.27x10 
-5 

0.17x10 
-11 

u.zu 

0.48 
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PARCALC TAFEL MENU 

EXP. NAMEZTAFCU AMNITST3* DATA:132 
TECHNIQUE;TAFEL CE VS 13 

RESULTS 

E(I=0) (MV) 100.4 

CATHDDIC TAFEL (MV) 114.6 

ANODIC TAFEL (MV) 102.8 

I-CQRR (UA/CM'>2> 2029.56 

CORR RATE (MPY) 1871.34 

CHI "2 522.67 

320 

240 

160 

r E( 1=0) 

80 
U 

I (UA/CM a2} 

Figure 16. Tafel plot and Parcalc 
in 1 M NH4NO3 + 0.05 M 
scan rate of 0.5 mV/s 

results for pure copper electrode 
CU(N03)2 solution at 25°C and 
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PARCALC TAFEL MENU 

EXP. NAME:TAPZN AMNITST2* 
TECHNIQUE;TAFEL 

DATA:56 
CE VS 13 

E(I=0) (MV) 

CATHODIC TAFEL (MV) 

ANODIC TAFEL (MV) 

I-CORR (UA/CM-^2> 

CQRR RATE (MPY) 

CHI -^2 

RESULTS 

-462.99 

245.08 

196.37 

15874.902 

9448.69 

592.25 

300 

-360 

-420 

I 

M 

E( 1=0) 

I  (UA/CM a2) 

Figure 17, Tafel plot and Parcalc results for pure zinc electrode 
in 1 M NH4NO3 + 0.05 M Cu(N03)2 solution at 25°C and 
scan rate of 0.5 mV/s 
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PARCALC TAFEL MENU 

EXP. NAMEITAFST AMNITO» DATA:199 
TECHNIQUE:TAFEL CE VS 13 

RESULTS 

E(I=0) (MV) -142.19 

CATHODIC TAFEL (MV) 286.92 

ANODIC TAFEL (MV) 125.17 

I-CQRR (UA/CM''2) 37.3888889 

CORR RATE (MPY) 18.57 

CHI '~2 57.75 

100 
m 

I 
w 

150 
U 

200 

250 

I  (UA/CMa2) 

figure 18. Tafel plot and Parcalc results for a$-brass (60/39) 
electrode in 1 M NH^NO^ solution at 25"C 
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So, the dissolution of Zn (and not of copper due to potential con

sideration) , and the reduction of nitrate ion (due to higher exchange 

current) are initially favored as the anodic and cathodic reactions. 

Due to consumption of ions (in cathodic reaction) the pH increases 

and Cu-dissolution reaction potential takes values less noble than the 

corrosion potential. This is supported by the observation that the solu

tion pH shifted from 5.68 (at the experiment beginning) to 6.68 three 

days later, and that the colorless solution became deep blue (indica-

2+ 
tion of Cu -complex formation) after four days. 

1 M (NH,)„S0, + 0.05 M CuSO, Two successive Tafel plots 
4—2—4 4 

(Figure 19) show the presence of two Tafel lines in the cathodic re

gion, similar to those in the solution of 1 M NH^NO^ + 0.05 M Cu(N0g)2' 

Moreover, the anodic curve shows the presence of two anodic Tafel lines. 

The large deviation, between the experimental data and the theoretical 

2 model, shown by CHI value (Figure 20) is not surprising. The only 

reliable parameter is the corrosion potential value, which is also con

sistent with the corrosion potential experiment result. According to 

the corrosion potential value, the most probable reactions are; 

Potential 

Cathodic; (V^) 

0^ + AH"*" + 4e;ii2H20 0.995 

Og + ZHgO + 4e;Z^40H~ 1.007 

Cu2+ + 2e:;=rCu 0.300 

Anodic : 

Zn^"^ + 2e;=tZn -0.820 
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240 

160 

i fi|iiii| I InHM| I ii|iiii| I ii|iiii| ITTpni|~Tnn^ini 

80 
m 

I 

u 
0 

-80 

-160 

10 
- 1  

I iiliiiil I iiliiiil I iilinil I iiliiiil I iiliiiil I 111 
0 

10 10 
2 

10 
3 

10 
4 

10 

m 
5 

10 
I (UA/CMA2) 

Figure 19. Tafel plots for a#-brass (60/39) electrode in 1 M 
(NH4)2S04 + 0.05 M CuSO^ solution, reproduced at the 
same experimental conditions at 25°C 
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PARCALC TAFEL MENU 

EXP. NAMESTAFSTIR AMSUL* 
TECHNIQUE:TAFEL 

DATA:151 
CE VS 13 

E(I=0) <MV) 

CATHDDIC TAFEL (MV) 

ANODIC TAFEL (MV) 

I-CORR (UA/CM^2> 

CORR RATE (MPY) 

CHI '^2 

RESULTS 

14.88 

843.3 

51.39 

1637.16667 

813.06 

831.65 

I I I |llll| 1 I I |llll| I I I [llllj I I I |llll| I I I |IIU 

100 

50 
A 

£ 

0 

E( 1=0) 

-50 

.100 
if 10 

\ 
2 3 4 

10 10 10 
I (UA/CMA2) 

10 

Figure 20. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M (NH,)„SO. + 0.05 M CuSO, solution 
at ZS'C 
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2+ 
The Zn dissolution and Cu -reduction are supported by the observed 

solution color disappearance. 

The Tafel plot and calculations are shown 

In Figure 21. The most probable reactions and their kinetic parameters 

are; 

1 M (NH^l^Sp^ 

Reaction 

Cathodic ; 

Og + 4H + 4e;ZÏ2H20 

Og + 2H2O + 4e;z:40H" 

Anodic: 

Zn^"^ + 2e;=rzn 

Potential 

0.879 

0.877 

-0.820 

2 (A/cm ) 

0.2x10 -9 

0.2x10 -9 

0.61x10 -13 

a 

0.40 

0.58 

According to both Mattsson, and Johnson and Leja, Cu does not take part 

in any reaction. This is supported by the observation that no solution 

coloration occurred. The low value of Zn-dissolution exchange current 

is consistent with the small corrosion current observed. 

1 M (NH_^)2C0j  + 0.05 M CuSO^ The Tafel plot and Parcalc 

results are shown in Figure 22. The probable reactions are: 

ir 

Reaction 

Cathodic: 

Og + 4H + 4e;z!2H20 

Og + 2Ĥ 0 + 4e-;=:40H" 

Potential 
(V 

0.728 

0.726 

° 2 
(A/cm ) 

a 

0.76x10 -5 

-5 
0.24 

0.78x10 
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PARCALC TAFEL MENU 

EXP. NAME:TAFST AMSUO* 
TECHNIQUE:TAFEL 

DATA:130 
CE VS 13 

RESULTS 

E(I=0) (MV) -ISO.8 

CATHODIC TAFEL (MV) ISO.42 

ANODIC TAFEL (MV) 104.11 

I-CORR (UA/CM'^2) 33.4901961 

CORR RATE (MPY) 16.63 

CHI "~2 27.03 

-40 

-80 

-120 

y 
1 

u 
160 

-200 

I I I ; iiiij I I 11 iiiij I I n iiiij I i ; i  11 HI 

E( 1=0) 

-2H0 

10 
-1 0 

10 

. y 

/ 
/ 
/ 

\ 
% 

\ 

1 2 
10 10 

I CUA/CMa2) 

I  '  •  t  I  tiiil • I I I  mil' • I t  ! III! 

10 

Figure 21. Tafel plot and Parcalc results for aB-brass (60/39) 
electrode In 1 M (NH^)2S0^ solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAME:TAFST AMCAR* 
TECHNIQUE;TAFEL 

DATA;ISO 
EE VS 13 

RESULTS 

E(I=0) (MV) -291.97 

CATHQDIC TAFEL (MV) 243.22 

ANODIC TAFEL (MV) 227.51 

I-CQRR <UA/CM''2) 11973.5926 

CORR RATE (MPY) 5946.46 

CHI '^2 26.93 

-240 

Z 

u 

I I 11 iiiii I I 11 inij I I n iiiij I I 11 nil 

E( 1:0) 
-280 

-320 

I (UA/CMa2) 

Figure 22. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M (NH4)2CO, + 0.05 M CuSO^ solution 
at 25°C 
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Cathodlc ! 

Og + HgO + 2e;=: HOg + OH 

[Cu(NH3>^1^'^+2H'^ +e^[Cu(NH3)2]"*" 

+ 2NH. 

Anodic : 

[Zn (NHg) ̂ + 2e^ Zn + 4NhJ 

[Cu (NH^) 2]"*" + 2H^ + Cu + 2NH^ 

Potential 

(V r )  

0.087 

0.150 

-0.97 

-0.11 

2 (A/cm ) 

0.33x10 -2 

0.18x10 -2 

0.11x10 -5 

0.65x10 -2  

a 

0 .26  

2+ Again Cu -complex reduction is favored due to higher concentration 

and exchange current. On the other hand, Cu-dissolution is favored over 

Zn dissolution for the same reasons discussed before in the case of 1 M 

NH^OH + 0.05 M CuSO^ solution. 

3 Tafel plot and Parcalc results are shown 

in Figure 23. The most probable reactions and their kinetic parameters 

Reaction 

Cathodlc: 

+ +Ue^2E^0 

Og + 2H2O + 4e;=:^40H 

°2 ^2° 2e;:±H02 + OH 

Anodic: 

[ Zn (NH^) ̂ + ah"*" + 2e^ Zn + 4NH^ 

Potential 

(Vfl) 

0.721 

0.719 

0.083 

-1.05 

a 

(A/cm ) 

0.94x10 -7 

0.95x10 -7 

-4 

0.20 

0.12x10 

0.61x10"^® 0.99 
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PARCALC TAFEL MENU 

EXP. NAME;TAFST AMCARO* 
TECHNIQUE:TAFEL 

DATA;200 
CE VS 13 

RESULTS 

E(I=0) (MV) -431.72 

CATHDDIC TAFEL (MV) 305.06 

ANODIC TAFEL (MV) 60.64 

I-CQRR (UA/CM'2) 

CORR RATE (MPY) 

CHI '-T. 

89.6862745 

44.54 

2.87 

-300 

-350 

-400 

: 

U 
-450 

I 11 |iiii| I 11 |iiii| I I H""[ ' ' ' l""| 

E( 1=0) 

-500 

\ 
-5501 1 MI nil I • • 11 'I • • • lilt 

0 1 2 3 
10 10 10 10 10 

I (UA/CMa2) 

uiU 

10 

Figure 23. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M (NH^)2C03 solution at 25"C 
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The low exchange current for Zn-dissolution is consistent with low cor

rosion current observed. At increased value of solution pH, due to 

cathodic reaction, the Cu-dissolution potential shifts to less noble 

values than the corrosion potential. This is supported by the observa

tion of solution coloration shortly after the sample immersion. 

1 M NH^Cl + 0.05 M CuCU Tafel plot and Parcalc results 

are shown in Figure 24. The probable reactions are: 

Reaction 

Cathodic: 

©2 + 4H^ + 4e;ir2H20 

cucig + e;zrcuci2 

Potential 

<V 

1.024 

0.300 

(A/cm ) 

0.50x10 -5 

0.19x10 -2 

a 

0.20 

Anodic : 

2+ . „ », Zn + 2e;=:Zn 

CuClg + e;=fCu + 2 CI 

-0.933 

-0.026 

0.21x10 

0.5x10"^ 

-11 0.55 

All the potential values are obtained from potential/pH diagrams of Zn-

HgO and Cu-H^O-Cl in reference [115]. 

The reduction of Cu^^ to CuCl^ is favored as the cathodic reaction 

due to higher concentration and exchange current. On the other hand, 

the Cu dissolution is favored over Zn-dissolution for the same reasons 

mentioned before in the case of 1 M NH^OH + 0.05 M CuSO^ solution. At 

higher anodic potential, CuCl^ is further oxidized to CuCl^ according 

to : 
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PARCALC TAFEL MENU 

EXP. NAME:TAFST AMCL* 
TECHNIQUE:TAFEL 

DATA:200 
CE VS 13 

RESULTS 

E<I=0> (MV) -131.21 

CATHODIC TAFEL (MV) 280.41 

ANODIC TAFEL (MV) 108.34 

I-CORR (UA/CM'^2> 8799.82 

CORR RATE <MPY) 4469.58 

CHI '^2 40.77 

0 
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Figure 24. Tafel plot and Parcalc results for aB-brass (60/39) 
electrode in 1 M NH^Cl + 0.05 M CuCl2 solution at 
25°C 
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CuClg + [CuClg]' 0.300 Vjj. 

This reaction leads to another anodic Tafel line as observed in Figure 

24 at a potential > 160 mV. 

1 M NH,C1 

H* 

Tafel plot and Parcalc results are shown in 

Figure 25. The most probable reactions are; 

Reaction 

Cathodic: 

Og + 2HgO + 4e;=40H 

OG + 4H + 4E;=^2HG0 

Og + H^O + 2e;zrH02 + OH 

Potential 
(V r )  

0.902 

0.896 

0.175 

^o 
(A/cm2) 

0.96x10 

,-9 

-10 

0.1x10 

0.73x10 -6 

a 

0.32 

Anodic : 

Zn^"*" + 2eI^Zn -0,933 0.76x10 -18 0.98 

The low corrosion current observed is consistent with the low exchange 

current for the Zn dissolution reaction. 

The Tafel plots were always used for qualitative evaluation of cor

rosion rates. In the present work, the quantitative results of the 

Tafel plot measurements imply the electrochemical reactions taking place 

at the electrode surface related to SCC. The results show the presence 

of three regions of corrosion current, i^^^, values. 

2 First region: icor"^0.1 mA/cm . Corrosion current 
is sufficiently low that SCC is not observed 
in the 7-day observation period. 

2 Second region: 0.l^i^or^S mA/cm . SCC generally ob
served whenever the dissolution mechanism operates. 



www.manaraa.com

67 

PARCALC TAFEL MENU 

EXP. NAME:TAFST AMCLO 2* 
TECHNIQUE:TAFEL 

DATA:210 
CE VS I] 

RESULTS 

E(I=0> (MV) -344.88 

CATHODIC TAFEL (MV) 187.33 

ANODIC TAFEL (MV) 61.59 

I-CORR ( UA/CM'^2 ) 21.66 

CORR RATE (MPY) 10.76 

CHI ^2 6.4 

-200 

-250 

-300 
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Figure 25. Tafel plot and Parcalc results for a0-brass (60/39) 
electrode in 1 M NH^Cl solution at 25°C 
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2 Third region; icor^S mA/cm . SCC is rarely observed, 
because the associated polarization usually results 
in general and uniform corrosion. 

While SCC was not observed in the first and third regions (except cases 

where the dissolution mechanism is not believed to operate), SCC was 

always observed in the second region. This observation supports the 

assumption that the dissolution mechanism is in effect in case of non-

tarnishing solutions and that only moderate corrosion rate can cause 

SCC in this case. 

One of the interesting findings in the present work is the prefer

ential dissolution of copper in complexing solutions. This was first 

predicted from electrochemical measurements on brass, where the pre

dicted anodic reactions from Tafel plots show the preferential copper 

dissolution in complexing solutions. The same result was then confirmed 

by Tafel plot measurements on pure copper and pure zinc in complexing 

and noncomplexing solutions under the same conditions. Table 4 shows 

the ratios of corrosion currents of pure Cu and pure zinc in two dif

ferent solutions (complexing and noncomplexing), at two different scan 

rates. 

Table 4. Corrosion current ratios of pure copper and pure zinc 

^Cu^^Zn 
Scan rate Scan rate 

Solution 0.05 mV/s 0.5 mV/s 

1 M NH^OH + 0.05 M CuSO^^ 1.20 1.40 

1 M NH^NO^ + 0.05 M Cu(N0g)2 0.30 0.36 

^Complexing solution. 
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2+ Slmilar results were obtained in Cu -containing carbonate solution. 

The results were further confirmed by surface analysis results as will 

be discussed later. 

2+ Corapcioglu [116] reported that the affinity of Cu ions to sur-

2+ face adsorption is higher than that of Zn ions in noncomplexing solu

tions where copper dissolves by two one-electron transfer reactions 

mechanism [113,117]: 

Cu(s) Cu^^^g + e .... (4a) 

<urf + ̂  

Under concentration polarization conditions, the higher adsorption of 

2+ Cu ions on the surface will lead to lower copper dissolution (in non-

2+ 
complexing solutions containing Cu ions) and selective dissolution 

of zinc. On the other hand, in complexing solutions, where Cu^-complexes 

are stabilized, reaction (4b) may not be important. Subsequent forma-

2+ tion of Cu -complexes can be accomplished by homogeneous reaction 

2+ 
with an oxidant (e.g., oxygen) in the solution. Moreover, Cu ion 

adsorption decreases with increasing of total complexation of ions [116]. 

2+ 5 
Since the stability constant, of Cu -complexes, is "10 times that of 

+ 2+ 
Cu -complex [118], then adsorption of Cu ions will decrease due to 

fast total complexation, leading to higher dissolution of copper. On 

the other hand, Johnson and Leja [52] reported the following free ener

gies for the reactions: AG* 
(Kcal) 

Cu + [Cu(m^)^]^- > 2[Cu(NH^)2]''' ... -3.72 ... (5) 
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AG" 
(Kcal) 

Zn + [CuCNH^)^]^"^ + ZECuCm^)^]'*' ... -50.84 ... (6) 

Although reaction (6) has a more negative free energy value, it appears 

to be much slower which indicates either that the activity of zinc in 

the brass surface is much smaller than expected, or the activation 

energy for reaction (6) is much higher than for reaction (5). The 

second assumption is supported by the electrochemical results in the 

present work, which show higher corrosion rate of pure copper than that 

of pure zinc in complexing solutions. 

The important role of Cu"^-complexes in copper dissolution has been 

discussed by Hansen [119]. A model for the catalytic oxidation of Cu"*"-

complexes can be developed in dilute solutions, assuming constant activi

ties of HgO, NHg and O^. It should be noted that for fast reactions 

the oxygen may be depleted and reactions may become oxygen transport 

limited. The catalytic oxidation is assumed to occur according to the 

following mechanism where Cu and Cu mean the corresponding ammonia 

complexes : 

(I) 4Cu + Og + 2HgO ACu"*" + 40H' (7) 

d[Cu] constant 

(II) 4Cu'^ + 0^ + 2R^0 * 4Cu-^ + 40H (8) 

which proceeds by the following steps 



www.manaraa.com

(6) • no + (ill) 

t^HonOlV -

(38) ' HO + "0 4 THOnn 
- ++ + 

I-OHl[^no]P, . 

(p8)  * HOno*—-OH + _^no 

(og) * •OH + ̂H0n0<^^0^H + ̂ "0 

[fono] [ no]Si = "^(-=^1 ) 
+ [^O^HlP 

(qg) * ^O^H + _HOZ + _^noz*—o^HZ + ̂no + Jono 

[ no]%=[ no] °a ®îi=®(__5£ ) 
+ •*• [+Ono]P 

(B8) * ^ono*—^0 + ̂no 

TL 
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If initial concentrations, at t=0, are zero for [Cu^], [Cu^], iHgOg], 

[CuO^]» [CuOH ] and [HO*], then amounts of the various species initial

ly will be proportional to t, t^, t^, and t^ for [Cu^], [CuO^], [Cu"^] 

and HgOg, and [CuOH^] and [H0-], respectively. It should be noted that 

if the reactions (8a-8e) are fast, then these proportions will not last 

very long. The steady state conditions can be assumed for CuO^, HgOg, 

HO' and CuOH^ since their concentrations are small due to high reactivi

ty. The steady state assumption may be risky in case of HgOg; however, 

it is necessary to avoid nonlinear differential equations, which can be 

solved only by numerical methods. According to steady state approxima

tion, the following equations are obtained: 

d[Cuot] 
= 0 = k^LCu"*"] - k^LCuoJllCu"^] 

+ ka 
i.e., [CuOg] = 

diH„0 ] + + + 
= 0 = k^[CuOp[Cu^3 - k^[Cu^] [HgOg] 

= k^lCu"^] - k^lCu'^llH^O^] 
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= 0 = k^ECu'*'] [HgOg] - k^[Cu'^][HO-] 

= k^ECu"*"] - kj[Cu+][HO.] 

k 
i.e., [HO-] = ̂  

^ = k^ECu'^'jCHgOg] + k^[Cu"^][HO-] - k^ECuOH*] 

= 2k^[Cu^] - k^ECuOH"^] 

2k [Cu+] 
i.e., [CuOH ] = 

k e 

Then, for Cu^-complex growth rate: 

^ - [Cu"*"] (k^ + kjj[CuoJ] 

+ k^tHgOg] + k^[OH-]} + ZkgECu ] 

4R^ - Ak^LCu"^] + 2k^[Cu'*^]. 

and for Cu -complex growth rate: 

^ = 2k^[Cu'*'][Cu02] + k^tCuOH"^] - k^ECu"*^] 
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= 2k^[Cu"^] + 2k^[Cu'^l - k^lCu"*^] 

= 4k^[Cu"*"] - k^[Cu^] 

The complete solution of the two differential equations, using Laplace 

transformations, is shown in Appendix D. The final results show that 

[Cu"*"] initially Increases in proportion to t (expected from the initial 

I [ 2 
set of equations) whereas [Cu ] increases in proportion to t (rather 

than t^) because the steady state assumption for CuO^ has "masked" that 

part of the transient behavior. 

It is concluded that copper dissolution is favored mostly in com-

plexing ammoniacal and ammonium salts solutions, while zinc dissolution 

is favored in noncomplexing ammonium salts solutions, and that prefer

ential dissolution is required for SCC to occur in nontarnlshlng ammoni

acal and ammonium salts solutions. On the other hand, protective film 

formation, general or low corrosion, and presence of inhibiting anions 

are among the factors decreasing the SCC susceptibility. 

Rotating ring disc electrode, RRDE, results The REDE results 

on an cx—brass (80/20) disc in 1 M NH^Cl + 0.05 M CuCl^ solution are 

shown in Figure 26. The ring current increases gradually with Increas-

Ing disc current, indicating the formation of Cu -complexes during the 

brass disc reaction. The ring residual current is obtained under the 

same conditions but in 1 M NaNG^ + 0.05 M Cu(N0g)2 solution of the same 

pH. No change in ring current is observed in spite of the increasing 
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Figure 26. I^-E^ and I^-E^ for Cu"*^ in 1 M NH.Cl + 0.05 M CuCl, solution, pH=3.5, 
using an «-brass (80/20) disc and a platinum ring 
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27. Ij-Ej and If-E^ for Cu in 1 M NaNOg + 0.05 M Cu(N03)2 solution, pH=3.5, 
using an a-brass (80/20) disc and a platinum ring 
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Figure 28. I^-Ed and If-Ea for Cu"*^ in 1 M NaNOg + 0.05 M CuCNOg)], 
solution, pH=4.1, using an a-brass (80/20) disc and a 
platinum ring 
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brass disc current (Figure 27), which indicates the absence of any 

Cu^-ion formation. Figure 28 shows the disc and ring currents in the 

latter solution at cathodic and anodic potentials w.r.t. the brass cor

rosion potential in this solution. While the brass disc current changes 

from cathodic to anodic region at almost the brass corrosion potential 

value, no change In ring current is observed. The results present a 

strong support for the presence of Cu^-complexes in the NH^Cl + CuClg 

solution, predicted from Tafel plot measurements. However, no ring 

current could be observed in Mattsson's solution, which may be at

tributed to the very fast oxidation of Cu^-complexes into the much 

2+ more stable Cu -complexes. 

Cyclic polarization measurement results The cyclic polariza

tion curves of a$-brass (60/39) (Figures 29-38) were obtained by scan

ning the potential of the brass sample from cathodic potentials (about 

-250 mV w.r.t. E^^^) to anodic potentials (about +250 mV w.r.t. 

then back to the initial cathodic potential. It is interesting to note 

the following features of cyclic polarization curves in solutions where 

sample cracking occurred, i.e.. Figures 29-33; 

a. The reverse anodic branch has always higher current 
values than (and appreciably removed from) the original 
anodic branch. 

b. The potential at which the reverse scan current changes 
sign (from anodic to cathodic current, i.e., zero-current 
potential) is less noble than the original value of E(I=0) 

c. At E^or, the value of the current on the reverse anodic 
branch is >10 mA/cm^. 
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Figure 29. Cyclic polarization curve for 
aB-brass (60/39) electrode in 
1 M NH4OH + 0.05 M CUSO4 
solution at 25*C 
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Figure 30. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M NH^OH solution at 25"C 
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Figure 31. Cyclic polarization curve for 
ogLbrass (60/39) electrode in 
1 M NH4NO3 + 0.05 M CU(N03)2 
solution at 25°C 
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Figure 32. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M NH^NO^ solution at 25"C 
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Figure 33. Cyclic polarization curve for 
aS-brass (60/39) electrode in 
1 M (NH4)2S04 + 0.05 M CUSO4 
solution at 25°C 
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Figure 34. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M (NH^)2S0^ solution at 25*C 
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Figure 35. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M (NH^)2C03 + 0.05 M CuSO* 
solution at 25°C 
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Figure 36. Cyclic polarization curve for 
aB-brass (60/39) electrode in 
1 M (m^)2C0^ solution at 25°C 
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Figure 37. Cyclic polarization curve for 
og-brass (60/39) electrode in 
1 M NH.Cl + 0.05 M CuCl2 solu
tion at 25°C 
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Figure 38. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M NH4CI solution at 25°C 
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Figure 39. Cyclic polarization curve for a-brass (80/20) electrode 
in 1 M NH^OH + 0.05 M CuSO^ solution at 25°C 



www.manaraa.com

85 

The same features are noticed for a-brass (80/20) in Mattsson's solu

tion (Figure 39). On the other hand, in Figures 34-38, it is clear that 

not all of these features are present in the case of solutions where 

no cracking occurred. 

Cyclic polarization curves at constant scan rate were used to 

predict pit formation [120-121], while SCC prediction was obtained from 

cyclic polarization curves at two different scans, mainly fast forward 

and slow reverse sweeps [122-123]. Parkins and Holroyd [72] suggested 

that SCC can be predicted to occur in the potential range where a fast 

(~1 V/min) and a slow (~10 mV/min) sweep rate potentiokinetic curves 

2 show appreciable current density displacement (~1 mA/cm ). They sug

gested that the fast and slow sweep rates reflect the activities of 

crack tip and sides, respectively. The present results show that SCC 

may be predicted to occur in a solution (at open circuit potential and 

constant load) if the corresponding cyclic polarization curve, at con

stant scan rate, satisfies the following features; 

1, The reverse anodic branch has always higher current 
values than the forward branch, and attains a valus 
2 10 mA/cm^ at the original corrosion potential. 

2. The zero-current potential, attained by the reverse 
branch, is always less noble than the original corrosion 
potential. 

These features may indicate the possible formation of pits, which are 

formed during the initiation stage of the SCC mechanism. The formation 

of pits will increase the anodic corroding area, hence, the anodic cur

rent values on the reverse branch will be higher than those on the 
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original one. Moreover, the decrease in anodic polarization due to pit 

formation will result in less noble corrosion potential [11]. 

Surface analysis tests 

All surface analysis tests were done on ag-brass (60/39) loop 

samples. 

Energy dispersive x-ray analysis (EDAX) results The analysis 

fundamentals are discussed in Appendix E. The EDAX analysis of the 

original untreated sample is shown in Figure 40. The brass consists 

mainly of Cu and Zn, in the ratio of = 1.86. Impurities of Fe 

and Sn were also detected. The analysis of samples failed in different 

solutions is discussed below. 

1 M NH^OH + 0.05 M CuSO_^ Three different samples of dif

ferent immersion times were analyzed: 

1. Immersion time of 4.5 hours: The analysis of the crack 
surface showed that Zn-enrichment or Cu-depletion is a 
feature of the whole cracking surface. The ratio of 
Cu/Zn decreases from 1.86 in the mechanically fractured 
region to ~1.3 on the crack surface (Figure 41). The 
same result was found also for the sample surface analy
sis. 

2. Immersion time of 32 hours: The analysis showed that 
near the crack tip, the Zn enrichment or the Cu-deple
tion is even more pronounced. Cu/Zn ratio is 0.25 
(Figure 42). However, approaching the crack initiation 
area, the region is Cu-rich. 

3. Immersion time of 4 days: The analysis of the crack 
surface behind the crack tip showed the presence of a 
Zn-rich region. The presence of a big ZnO particle 
behind the crack tip is revealed in Figure 43. The 
structure was confirmed by EDAX analysis shown in Figure 
44. However, moving away from the crack tip, in the 
direction of the crack intiation region, the analysis 
showed a Cu-rich region (Figure 45). Moreover, the sam
ple surface was found to be Cu-rich. 
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No. of Iterations 
K 

0.631 
0.349 
0.002 
0.011 
0.002 
0.003 

• — High Absorbance 

CU-K 
ZN-K 
SN-L 
FE-K 
SI-K 

IZ] [A] tF3 [ZAP] 
1 .006 1 .000 1 .000 1 .007 
0 .995 0 .999 1 .000 0.995 
1 .261 1 .035 0 .993 1 .297 
0 .957 1 .007 0 .844 0.814 
0 .776 2 .007 0 .999 1 .558 
0 .705 1 .983 0 .999 1 .399 

ATOM.% 
42.62 
33.66 
0.14 
1 .05 
0.85 
1 .68 

WT.% 
63.39 
34.61 
0.26 
0.93 
0.37 
0.42 
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Figure 40. Energy dispersive x-ray (EDAX) analysis of untreated 
sample of aB-brass. Cu/Zn = 1.86 
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No. of Iteration# 0 
K IZ3 [A] IF3 C2AF1 

CU-K 0.552 1.001 1.000 1.000 1.002 
2N-K 0.434 0.991 0.999 1.000 0.991 
SN-L 0.011 1.255 1.036 0.994 1.293 
* - High Ab*orb*nce 

ATOM.% WT.% 
54.13 55.39 
43.09 
0.76 

43.18 
1 .43 

L.g TN-5=00^S 12:14 ursort 0 

nnTimttrf^r 
ulinmiTM 11 n 1 i n i 11 lYllfHrr 
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Figure 41. Energy dispersive x-ray (EDAX) analysis of crack surface 
in ag-brass loop specimen cracked in 1 M NH^OH + 0.05 M 

Immersion time 4.5 hr, Cu/Zn = 1.30 
ag 

CuSO 
4* 
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N o .  o f  I t e r a t i o n s  1  
— K CZ3 [A] [F] IZAFl ATOM.% WT.% 

CU-K 0 .180 1 .022 1 .001 1 .000 1 .024 15.59 17.78 
ZN-K 0 .742 1 .012 1 .000 1 .000 1 .012 42.36 72.23 
SN-L 0 .028 1 .281 1 .035 0 .995 1 .320 1 .71 3.62 
FE-K 0 .007 0 .972 1 .010 0 .885 0.870 0.67 0.66 
SI-K 0 .001 0 .788 2 .015 0 .999 1.589 0.42 0.21 
0 -K 0 .039 0 .717 2 .038 0 .999 1 .463 19.26 5.49 
• — High Absorbance 

ËSpaft 8"«i86i5 t'8 ™-==~R§î® s ssBfya'ESBSS-*: '="•= 

GRASS jn Flees PT e PH134 

Figure 42. Energy dispersive x—ray (EDAX) analysis of crack surface 
in a&-brass loop specimen cracked in 1 M NH^OH + 
0.05 M CuSO^. Immersion time 32 hr, Cu/Zn = 0.25 
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Fig. 43. Scanning electron micrograph of ZnO crystal detected 
on the crack surface on a^-brass (60/39) loop sample 
in i M NH.ÔH + 0.05 H CuSC. solution. Thé immersicn 

4 4 
time is 4 days 
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N o .  o f  I t e r a t i o n s  3  
K [Z] [A] tF3 CZAF] ATOM.% WT.% 

CU-K 0 .027 1 .085 0 .999 1 .000 1.085 1 .67 2.63 
ZN-K 0 .6! 1 1 .073 0 .999 1.000 1 .072 47.80 76.76 
0 -K 0 .151 0 .766 1 .918 0.999 1 .470 49.55 19.59 * 
FE-K 0 .006 1 .033 1 .005 0.883 0.918 0.37 0.52 
SN-L 0 .000 1 .364 1 .025 0.995 1.393 0.04 0.11 
S -K 0 .000 0 .864 1 .394 0.999 1 .204 0.00 0.00 G 
SI-K 0 .002 0 .841 1 .950 0.999 1 .641 0.56 0.39 « 
« - High Absorbance 

9 888?%,ilsg%89f= 

iflii#2 F2502 PTB ZNO 6/17/85 ISK^S^'sTsh 

Figure 44. Energy dispersive x-ray (EDAX) analysis of ZnO crystal 
shown in Figure 43 
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N o .  o f  I t e r a t i o n s  2  
K tzi CA] CF3 [ZAP] ATOM.% WT.% 

CU-K 0.807 1 .009 1 .000 1 .000 1.010 76.26 80.71 
ZN-k 0.155 0.998 0 .999 1 .000 0.998 14.28 15.35 
0 -K 0.014 0.708 1 .941 0 .999 1 .375 7.58 2.00 * 
FE-K 0.019 0.960 1 .006 0 .837 0.809 1 .70 1.57 
SN-L 0.002 1 .265 1 .030 0 .993 1 .295 0.19 0.37 
S -K 0.000 0.800 1 .409 0 .999 1.127 0.00 0.00 G * 
SI-K 0.000 0.779 1 .977 D .999 1 .540 0.00 0.00 G « 
* - High Absorb*nc* 

ÎSPIS?? TN-5500p|ÇS (1) 9.888?y0'l5g%§= IS'Sl 

W! Wb « LOU 1—TBTS? 
#2 F2533 PTC 6/17/85 15KV5"5,3N 

Figure 45. Energy dispersive x-ray (EDAX) analysis of crack surface 
(near initiation region) in a$-brass loop specimen cracked 
in 1 M NH^OH + 0.05 M CuSO^ solution. Immersion time 4 
days, Cu/Zn = 5.34 
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1 M NH^OH Results were similar to those obtained in the 

last solution. The analysis of a sample removed from the solution just 

after visible crack propagation revealed that near the crack tip the sur

face is Zn-rlch (Figure 46). However, it is Cu-rich near the initiation 

point (Figure 47), and even more Cu-rich on the sample surface. ZnO 

particles were also detected near the crack tip in a sample picked out 

later from the solution. In the same sample, the Cu-enrlchment away 

from the crack tip was more pronounced. 

1 M NH^NOj + 0.05 M Cu(NOj)^ The cracking in this solution 

propagated from the outer surface (where stresses are tensile) to the 

inner surface (where stresses are compressive) in an oblique line (Figure 

48). The EDAX analysis shows more Zn-depletlon near the crack tip 

(Figure 49), than in the initiation region (Figure 50). 

1 M NH^NOj The analysis of a sample removed from the solu

tion shortly after crack propagation showed that the whole cracking sur

face was slightly Cu-depleted (Figure 51). The sample surface showed 

the same slight Cu-depletlon. 

1 M (NH^)2S0^ + 0.05 M CuSO^ The EDAX analysis shows that 

the cracking surface is Cu-rich (Figure 52), and Cu increases toward the 

crack initiation region. Moreover, the outer surface away from the 

crack was found to be more Cu-rich than the outer surface around the 

crack, which was also Cu-rich. The outer surface away from the crack 

seems to act as a cathode (where copper deposits), hence, becomes more 

rich in copper. 
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N o .  o f  I t « r * t i o n s  1  
K 12] [A] IF3 tZAF] ATOM.% WT.% 

CU-K 0 .604 1 .005 1 .000 1 .000 1 .006 59.77 60.57 
ZN-K 0 .377 0 .995 0 .999 1 .000 0.995 36.32 37.38 
0 -K 0 .005 0 .705 1 .986 0 .999 1 .400 2.77 0.70 
FE-K 0 .008 0 .956 1 .007 0 .847 0.816 0.80 0.71 
SN-L 0 .004 1 .260 1 .035 0 .994 1 .296 0.34 0.64 
S -K 0 .000 0 .797 1 .424 0 .999 1 .134 0.00 0.00 
SI-K 0 .000 0 .775 2 .Oil 0 .999 1 .560 0.00 0 .00 
• - High Absorbance 

êUPÎS?? tn-5500^S 

J 1 . 
. 
/ w 

1 
1 

1 

.. >ihi Éi|l| 

m 

lA 

a.iaaa Es-ss 
200 F276i PTA S/i7/S5 1S<V="5 LOG 1 10.240 

Figure 46. Energy dispersive x-ray (EDAX) analysis of crack surface 
in a3-brass loop specimen cracked in 1 M NH^OH solution. 
Cu/Zn = 1.65 
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No. of lt»r«tions 1 
K tZ} tAl [F] tZAFl ATOM.% WT.% 

CU-K 0.640 1 .006 1 .000 1 .000 1 .007 62.42 64.04 
2N-K 0.336 0.996 0 .999 1 .000 0.996 31 .94 33.29 
0 -K 0.007 0.706 1 .981 0 .999 1 .398 4.14 1 .06 
FE-K 0.008 0.957 1 .007 0 .845 0.816 0.73 0.66 
SN-L 0.006 1 .261 I .034 0 .993 1 .297 0.42 0.80 
S -K 0.000 0.797 1 .422 0 .999 1 .133 0.00 0.00 
SI-K 0.000 0.776 2 .006 0 .999 1 .556 0.34 0.15 
« — High Ab»orb»nc« 

G * 
« 

ËupBorî 0 KeÇ L.§ TN-5500̂ S (1) 
14:03 

Ék^i*! F2TB2 PTB S/17/S5 15KV5"S 

Figure 47. Energy dispersive x-ray (EDAX) analysis of crack surface 
(near initiation region) in a5-brass loop specimen cracked 
in 1 M NH^OH solution. Cu/Zn = 1.95 
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Fig. 48. Scanning electron micrograph of SCC crack on a$-brass 
(60/39) loop sample in 1 M NH^NO^ + 0.05 M Cu(N0g)2 
solution at 25° C, illustrating the propagation of 
the crack from the outer to the inner surface 
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No. of Iteration* 0 
K 123 [A] IF3 [ZAP] ATOM.% WT.% 

CU-K 0.785 1.002 1.000 1.000 1.002 79.02 78.76 
ZN-K 0.214 0.991 0.999 1.000 0.991 20.98 21.24 
SN-L 0.000 1.255 1.033 0.993 1.289 0.00 0.00 G 
* - High Absorb»nc« 

ëSPiSE? TN-5500^S 

f!r?rrrnWi Mi 
VPS = AlAStfe 

BRRSSS PTR F1700 5/29/65 i5Kv4NM4 

Figure 49. Energy dispersive x—ray (EDAX) analysis of crack surface 
in ag-brass loop specimen cracked in 1 M NH^NO^ + 
0.05 M Cu(N02)2 solution. Cu/Zn = 3.77 
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No. o-f Iteration* 2 
K tZ3 tA3 IF3 [ZAP] ATOM.% WT.% 

CU-K 0.689 1.010 1.000 1.000 1.011 64.29 68.57 
ZN-K 0.282 0.997 0.999 1.000 0.997 25.57 27.70 
SN-L 0.009 1.266 1.032 0.993 1.299 0.59 1.18 
O -K 0.018 0.708 1.968 0.999 1.395 9.54 2.55 
* - High Ab*orb*nce 

BSFISEÎ tn-5500^S (1)10.700^1 i^SiS^i®® 12:02 

I 
-608-

in III ! 11i 111(I(I(II ËnTÎTïnTiTrrnh^YTivn 
'Vl-S - •Wiife 

Wlit': . . 
10.240' 

BRHSS2 PTB F1701 5/29/86 iSKv̂ NFH 

Figure 50. Energy dispersive x-ray (EDAX) analysis of crack surface 
(near initiation region) in ag-brass loop specimen cracked 
in 1 M NH^NOg + 0.05 M Cu(N02)2 solution. Cu/Zn = 2.51 
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N o .  © • *  I t e r a t i o n s  1  
K I Z l  CA] tF3 tZAFl ATOM.% WT.% 

CU-K 0 .567 1 .003 1 .000 1 .000 1 .004 57.45 57.03 
ZN-K 0 .420 0 .993 0.999 1 .000 0.993 41 .40 41 .73 
0 -K 0 .000 0 .703 1.995 0.999 1 .404 0.00 0.00 G * 
FE-K 0 .008 0 .955 1.007 0.848 0.816 0.78 0.68 
SN-L 0 .004 1 .257 1.036 0.994 1 .295 0.29 0.53 
S -K 0 .000 0 .795 1.428 0.999 1.135 0.00 0.00 G * 
Sl-K 0 .000 0 .774 2.020 0.999 1 .563 0.08 0.04 « 
• - High Absorbanc* 

3 F2602 PTB 6/17/85 15KV5"5.3N' 

Figure 51. Energy dispersive x-ray (EDAX) analysis of crack surface 
in a&'-brass loop specimen cracked in 1 M NH^NO^ solution. 
Cu/Zn = 1.39 
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N o .  o f  I t e r a t i o n s  1  
K [Z3 [A] IFJ tZAFJ ATOM.% WT.% 

CU-K 0 .626 1 .008 1 .002 1 .000 1 .010 61 .58 63.13 
ZN-K 0 .313 0 .997 1 .000 1 .000 0.998 29.98 31 .21 
SN-L 0 .004 1 .263 1 .033 0 .993 I .297 0.29 0.56 
FE-K 0 .046 0 .959 1 .007 0 .857 0.828 4.28 3.84 
SI-K 0 .004 0 .778 1 .990 0 .999 1.548 1.41 0.63 
0 -K 0 .004 0 .707 1 .972 0 .999 1 .394 2.46 0.63 
• - High Absorb«ncc 

:ur.or, CO 9.938??0^?iS^î! 12:54 

yi fWi** 'CM"«"Vr?fT"tA ï*î tItlTl I mtf̂ Tirnn \ 1W 
200 BRHSS #2 Fiéii htfiR CENTER 

WS ; 2048 

Figure 52. Energy dispersive x-ray analysis of crack surface 
in aB-brass loop specimen cracked in 1 M (NH^)2S0^ + 
0.05 M CuSO^ solution. Cu/Zn =2.05 
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Scanning electron microscopy (SEM) results Two micrographs of 

the crack surface ag-brass (60/39) in 1 M NH^OH + 0.05 M CuSO^ solution, 

are shown in Figures 53 and 54. The presence of two different regions, 

the see surface and the post-test mechanical fracture surface region, 

is clearly shown. The details of the mechanical fracture surface are 

shown in Figure 53, where the ductile fracture character can be easily 

recognized. 

The see surface together with the post-test mechanical fracture 

surface are shown in Figure 54. The SCC surface is free of true cleav

age features or genuine fatigue striations [124], and more nearly re

sembles an etched surface as might be expected in the dissolution mechan

ism. 

Optical microscopy results Two phases were identified under op

tical microscope, which is consistent with the phase diagram for eu-Zn 

alloy at (60/39) composition. The cracks in all solutions were trans-

granular and branching. Figure 55 shows a cracking sample in 1 M 

NH^OH + 0.05 M CuSO^ solution, at 400X. It is noteworthy that this is 

the only sample where chemical deposits were detected on the crack sur

face. The same results were obtained for a cracking sample in 1 M NH^OH 

solution; however, a small crack (other than the main one) showed a dis

continuous type of propagation. Figure 56 at 400X. The main crack had 

the same features as the last sample. In 1 M NH^NO^ solution, the crack

ing began on the outer surface and propagated longitudinally along the 
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Fig. 53. Scanning electron micrograph of the mechanically-
fractured (post-test) surface on a$-brass (60/39) 
loop sample in I M NH.OH + 0.05 M CuSO, solution 
at 25° C 

Fig. 54. Scanning electron micrograph showing the difference 
between the post-test and the SCC surfaces on 
a3-brass (60/39) loop sample in 1 M NH^OH +0.05 M 
CuSO, solution at 25° C 
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Optical micrograph of transgranular SCC Fig» 
on ag-brass (60/39) loop sample In 1 M 
NH^OH + 0.05 M CuSO^ solution at 25 C 

56. Optical micrograph of transgranular 
SCC on agi-brass (60/39) loop sample in 
1 M NH^OH solution at 25° C 
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inner surface. It is noteworthy that many small cracks were detected 

on the inner surface where stresses were compressive. The cracking 

in 1 M (NH^)2S0^ + 0.05 M CuSO^ is also transgranular with considerable 

branching. 

In general, the surface analysis results support the conclusions 

drawn from the electrochemical tests. The agreement between EDAX and 

Tafel plot results is clear in Table 5. When copper dissolution is the 

main reaction, then the crack tip is zinc-rich and vice versa. The 

analysis of the initiation region is also in harmony with the calcu

lated secondary reaction, if present. So, if the secondary reaction is 

zinc dissolution, then the initiation region is copper-rich. The only 

exception to this generalization is the case of 1 M NH^NO^ solution, 

where the secondary reaction is zinc dissolution, but the initiation 

region analysis is Zn-rich. However, the composition changes all over 

the fracture surface are very small, which is in accordance with the 

observed small i , and suggests that cracking in this solution does 

not propagate by a dissolution mechanism as will be discussed later. 

In other solutions, dezincification seems to be a characteristic 

of the whole surface except at the cracking tip in two solutions, name

ly, hydroxide solutions, where the crack tip was Zn-rich, indicating 

more Cu-dissolution. Pinchback et al. [44] observed "preferential 

Zn dissolution on the SCC surface produced by the nontarnishing solu

tion" for a-brass in Pugh's solution. This result is in accordance 
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Table 5. Electrochemical and EDA]( results for ag-brass (60/39) in ammoniacal and ammonium salts 
solutions 

Electrochemical predictions _ 
EDAX results 

Solution 
Anodic 
Main 

reactions 
Secondary see (hrs) 

Crack 
tip 

Initiation 
point Surface 

1 M NH.OH + 0.05 M CuSO, 
4 4 

Cu-
dissolution 

Zn-
dissolution 

/ 5.25 Zn-rich Cu-rlch Cu-rich 

1 M NH.OH 
4 

II II / 48.00 
ft ff IV 

1 M NH^NO^ + 0.05 M Cu(N0g)2 
Zn-

dissolution 
- / 2.75 eu-rich Cu-rich 

(less) 
Cu-rich 

1 M NH^NOg 
Cu-

dlssolution 
(slight) 

Zn-
dissolution 
(slight) 

/ 48.00 
Zn-rlch 
(slight) 

Zn-rich 
(slight) 

Zn-rich 
(slight) 

1 M (NH^)^SO^ +0.05 M CuSO^ Zn-
dissolution 

- / 31.50 eu-rich Cu-rich 
(more) Cu-rich 
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with the observed dezinclfication in the present work. Moreover, the 

same authors reported that the "composition of the SCC fracture surface 

is such that the Cu/Zn atomic ratio is 3 to 5, compared to a value of 

2.4:1 for the bulk alloy composition," which represents a Zn-rich 

state. If this state is near the crack tip, then it is in agreement 

with the Zn-rich crack tip found in the present work for NH^OH with and 

without CuSO, solutions. The authors also observed that the SCC surface 

was cleavage-like, which is hard to reconcile with the dissolution mechan

ism. The cleavage-like features of SCC surface in nontarnishing solu

tions were later reported again by Kermani and Scully [31] and also by 

Beavers and Pugh [57]. In the present work, no signs of true cleavage 

features were detected on the SCC surface in 1 M NH,OH + 0.05 M CuSO, 4 4 

solution. Figure 54. 

This may not be in contradiction to the earlier reported results 

since in all cases reported before [31,44,57] the nontarnishing solu

tion was Pugh's solution (15 N NH^OH + 1 g/L of dissolved Cu), while 

in the present work the nontarnishing solution is Mattsson's solution 

(1 M NH^OH + 0.05 M CuSO^). The absence of cleavage features in the 

present work favors the dissolution mechanism, once accepted by many 

authors [12,15,16,19,23,106] as the main mechanism for SCC in nontar

nishing solutions. The transgranular mode of cracking is observed in 

all the solutions under consideration as evidenced by electron micro

scopy (Figures 55-56). 
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Brass in Nonammonlacal Aqueous Solutions 

Stress corrosion cracking tests 

oiB-brass (60/39) loops were tested In different nonammonlacal solu

tions using the loop sample method. Table 6 shows the cracking time in 

each solution. It is noteworthy that cracking time is always shorter 

2+ in solutions containing Cu ions than in other solutions. There is 

also a striking analogy between nonammonlacal and ammonium salt solutions 

having the same anion, namely nitrate, chloride and sulfate solutions 

with only one exception, the sodium nitrate solution where no cracking 

was observed. On the other hand, cracking time observed in ammonium 

nitrate solution was the longest among the ammonium salt solutions. 

Tensile stress specimens of a-brass (80/20) were tested in several 

nonammonlacal solutions at constant load. The results. Table 7, show 

that a-brass (80/20) is Immune to SCC in all solutions tested. The re

sults in Mattsson's solution are Included for comparison. 

Electrochemical tests 

Corrosion potential, , measurements The corrosion poten

tials of a3-brass (60/39) in different nonammonlacal solutions are 

2+ 
shown in Table 6. In solutions containing Cu ions, the corrosion 

potential is close to or less noble than that predicted from the Nernst 

potential of a pure Cu electrode, indicating less corrosion of copper. 

The solution of NaCl + CuCl^ is an exception, since the corrosion po

tential is more noble than the Nernst potential of pure Cu, indicating 

higher dissolution of copper. This Is supported by the fact that dis-
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Table 6. Time-to-crack and corrosion potential of ag-brass (60/39) 
in nonammoniacal solutions 

Solution 

t c 
(hrs) 

^cor 

0.05 M Cu(NOg)g 2 292 

1 M NaNO^ + 0.05 M CuCNOg)^ 5 303 

1 M NaNO^ NC 226 

1 M NaClOj + 0.05 M Cu(NOg)g 5 294 

1 M NaClOg 8 272 

1 M NaNOg + 0.05 M CuCNO^)^ 5 329 

1 M NaNO^ 16 52 

1 M NaCl + 0.05 M CuCl^ NC 102 

1 M NaCl NC —98 

1 M Na-SO, + 0.05 M CuSO, 2 4 4 62 231 

1 H Na^SO^ NG 208 

solution products, Cu"*" ions, are stabilized in chloride solutions. In 

2+ Cu -free solutions, the comparison between the measured corrosion po

tentials and the calculated Nernst potential for pure Cu indicates neg

ligible Cu-dissolution when Cu-concentration is 10 ̂ -10 ̂  g atom/L. 

The corrosion potential vs. time curves for a-brass 80/20 are shown 

in Figure 57. The less noble potentials are observed in complexing solu-
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1. 1 M NH^OH + 0.05 M CuSO^ 

2. 1 M pyrophosphate + 0.05 M CuSO^ 

3. 1 M ethylenediamine + 0.05 M CuSO^ 

4. 0.1 M H^SO^ + 0.5 M CuSO^ 

Figure 57. Corrosion potential vs. time for a-brass (80/20) electrode 
in various aqueous solutions, containing Cu ions, at 25 C 
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Table 7. Time-to-failure of a-brass (80/20) in aqueous solutions 

Solution pH tg (hrs) 

1 M NH.OH + 0.05 M CuSO, 
4 4 

10.9 30 

1 M K^(PgO^) + 0.05 M CuSO^ 10.1 NF 

0.5 M CuSO^ + 0.1 M HgSO^ - NF 

1 M NaNO, 2.5 NF 
J 8.4 NF 

11.4 NF 

1 M NaClOg 8.4 NF 

tions, where in noncomplexing solutions the corrosion potential is 

close to that predicted from the Nernst equation for a pure copper 

electrode. 

Tafel measurements results Tafel plots, measured at a scan 

rate of 0.05 mV/s, are shown in Figures 58-63, together with the Par-

calc calculations, for ag-brass (60/39) In some of the solutions under 

2+ 
test. The results show clearly the effect of Cu ions on the in

creased corrosion rate. The most probable cathodic reactions taking 

place in these solutions, along with their standard reduction poten

tials, are; 
Potential 

Reaction 

Og + ZHgO + 4e;::^40H" 0.401 

NO" + HgO + 2e^N0~ + 20H~ 0.010 
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PARCALC TAFEL MENU 

EXP. NAMES TAP CUNIT 11* DATA:120 
TECHNIQUE:TAFEL EE VS 13 

RESULTS 

E<I=0> (MV) 48.09 

CATHODIC TAFEL (MV> 173.OS 

ANODIC TAFEL (MV) 152.29 

I-CORR (UA/CM'~2> 1130.34 

CORR RATE <MPY) 554.96 

CHI '-2 228.47 
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Figure 58. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 0.05 M Cu(N0g)2 solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAMEZTAFST SODNIT!* 
TECHNIQUE:TAFEL 

DATA:128 
CE VS I] 

RESULTS 

E<I=0) (MV) 103.01 

CATHODIC TAFEL (MV) 54.98 

ANODIC TAFEL (MV) 50.55 

I-CORR (UA/CM^2) 845.545454 

CORR RATE (MPY) 419.92 

CHI -^2 283.54 
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Figure 59. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode In 1 M NaNO- + 0.05 M CuCNOq)- solution at 
25*C 
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PARCALC TAFEL MENU 

EXP. NAMEITAFST SODCL+* 
TECHNIQUE;TAFEL 

DATA:149 
CE VS 13 

RESULTS 

E(I=0) (MV) 57.42 

CATHQDIC TAFEL (MV> 190.77 

ANODIC TAFEL (MV) 55.13 

I-CORR (UA/CM'2) 2778.44445 

CORR RATE CMPY) 1379.86 

CHI -^2 14.49 

1% 

I 

I I NIIIIJ—I I I|IIII|—R I NIIIIJ—I Y NULL 

I (UA/CMa2) 

Figure 60. Tafel plot and Parcalc results for a&-brass C60/39) 
electrode in 1 M NaClO- + 0.05 M CuCNO,)» solution at 
25°C 
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PARCALC TAFEL MENU 

EXP. NAMETTAFST SODNI+* 
TECHNIQUE!TAFEL 

DATA:189 
CE VS I] 

RESULTS 

E i l - O )  <MV) 75.54 

CATHODIC TAFEL (MV> 241.04 

ANODIC TAFEL (MV) 44.06 

I-CORR (UA/CM'-2> 179.046512 

CORR RATE (MPY) 88.92 

CHI -^2 15. B 

I 

:( 1=0) 

I (UA/CMA2) 

Figure 61. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M NaNO„ + 0.05 M CuCNO,)„ solution 
at 25°C ^ 
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PARCALC TAFEL MENU 

EXP. NAME:TAFST SODC+* DATA:202 
TECHNIQUE:TAFEL CE VS 13 

RESULTS 

E<I=0) (MV) -10B.53 

CATHQDIC TAFEL (MV> 303.38 

ANODIC TAFEL (MV) 132.92 

I-CORR (UA/CM'2) 10889.625 

CDRR RATE (MPY) 5408.12 

CHI '^2 7.87 

E( 1=0) 

150 
M 

.250 

I (UA/CMA2) 

Figure 62. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M NaCl + 0.05 M CuCl_ solution at 
25'C 
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PARCALC TAFEL MENU 

EXP. NAME;TAFST SODC 
TECHNIQUE:TAFEL 

DATA:192 
[E VS 13 

RESULTS 

E(I=0) <MV) -341.33 

CATHODIC TAFEL <MV> 211.91 

ANODIC TAFEL (MV) 77.49 

I-CORR (UA/CM~2) 28.3529412 

CORR RATE <MPY> 14.08 

CHI '^2 39.41 
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Figure 63. Tafel plot and Parcalc results for ag-brass (60/39) 
electrode in 1 M NaCl solution at 25°C 
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Potential 
Reaction 

Cu^"'" + leZZTCu 0.340 

CuClg + e^ZTCuClg 0.300 

On the other hand, the most probable anodic reactions are: 

Zn^"^ + 2e;Z^ Zn -0.76 

Cu2+ + 2e^Cu 0.34 

CuCl" + e^ZTCu + 2C1~ -0.026 

To predict the electrochemical reactions in each solution, the above 

potentials are adjusted according to the solution pH and dissolved ions. 

Table 8 summarizes the proposed anodic and cathodlc reactions in each 

solution, along with the corresponding values of the corrosion potential 

and corrosion current. The Tafel plots of pure Cu and pure Zn in two 

noncomplexing solutions (Figures 64-67) support the predicted selective 

dissolution of Zn in these solutions. 

The Tafel plot measurements and Parcalc results, for a-brass (80/20) 

in some of the solutions, are shown in Figures 68-71. The most probable 

anodic and cathodlc reactions in these solutions (according to potential 

values) are summarized in Table 9. The small corrosion current in NaNO^ 

2+ solution, and the subsequent large Increase upon Cu ion addition, are 

noteworthy. No SCC was observed in either solution. The very low cor

rosion rate in pyrophosphate + CuSO^ is attributed to the formation of 
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PARCALC TAFEL MENU 

EXP. NAME:TAFCU NACLO* DATA:98 
TECHNIQUE:TAFEL EE VS 13 

RESULTS 

E(I=0) <MV) 122.25 

CATHODIC TAFEL (MV) 286.79 

ANODIC TAFEL (MV) 149.05 

I-CORR <UA/CM"2) 7026.71739 

CORR RATE <MPY) 3238.96 

CHI ^2 236.7 
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Figure 64. Tafel plot and Parcalc results for pure copper electrode 
in 1 M NaNO^ + 0.05 M Cu(NOg)^ solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAME:TAFZN NACLO* 
TECHNIQUESTAFEL 

DATA:231 
CE VS 13 

RESULTS 

E(I=0> (MV) -534.65 

CATHODIC TAFEL (MV) 74S60.02 

ANODIC TAFEL (MV) 130.02 

I-CORR (UA/CM-^2> 14302.0392 

CORR RATE (MPY) 8512.52 

CHI -^2 66.02 
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Figure 65. Tafel plot and Parcalc results for pure zinc electrode 
in 1 M NaNO^ + 0.05 M CuCNO^)^ solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAMEZTAFCU SODCL* DATA:123 
TECHNIQUE:TAFEL CE VS 13 

RESULTS 

E(I=0) (MV) 154.31 

CATHODIC TAFEL (MV) 225.76 

ANODIC TAFEL (MV) 120.17 

I-CORR (UA/CM'^2) 4135. 12727 

CORR RATE (MPY) 1906.08 

CHI •"•2 8.76 
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Figure 66. Tafel plot and Parcalc results for pure copper electrode 
in 1 M NaClOj + 0.05 M CuCNOg)^ solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAME:TAFZN SODCL* 
TECHNIQUE:TAFEL 

DATA:157 
CE VS 13 

RESULTS 

E<I=0) <MV> -619.32 

CATHODIC TAFEL (MV) 388.05 

ANODIC TAFEL (MV) 137.16 

I-CORR (UA/CM^2) 14766.9821 

CORR RATE (MPY) 8789.25 

CHI "2 20.1 
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Figure 67. Tafel plot and Parcalc results for pure zinc electrode 
in 1 M NaClOg + 0.05 M Cu(N02)2 solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAME:TAP RDE All 
TECHNIQUE:TAFEL 

DATA:248 
CE VS 13 

RESULTS 

E(I=0) (MV) -344.61 

CATHODIC TAFEL (MV) 369.81 

ANODIC TAFEL (MV) 383.24 

I-CORR (UA/CM^2) 2333.87268 

CQRR RATE (MPY) 1141.2 

CHI •-2 32.29 
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Figure 68. Tafel plot and Parcalc results for a-brass (80/20) 
rotating disc electrode at 100 rpm in 1 M NH^OH + 
0.05 M CuSO^ solution at 25*C 
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PARCALC TAFEL MENU 

EXP. NAME:TAP RDE Pll* 
TECHNIQUE;TAFEL 

DATA:122 
[E VS I] 

E(I=0) <MV) 

CATHODIC TAFEL (MV) 

ANODIC TAFEL <MV> 

I-CORR (UA/CM^2> 

CORR RATE <MPY> 

CHI ^"2 

RESULTS 
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Figure 69. Tafel plot and Parcalc results for a-brass (80/20) 
rotating disc electrode at 100 rpm in 1 M pyro
phosphate + 0.05 M CuSO^ solution at 25°C 



www.manaraa.com

124 

PARCALC TAFEL MENU 

EXP. NAME;TAP RDE 18» 
TECHNIQUE:TAFEL 

DATA:9S 
CE VS 13 

E<I=0) (MV) 

CATHQDIC TAFEL (MV) 

ANODIC TAFEL (MV) 

I-CORR (UA/CM-^2) 

CQRR RATE (MPY) 

CHI '^2 

RESULTS 
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Figure 70. Tafel plot and Parcalc results for a-brass (80/20) 
rotating disc electrode at 100 rpm in 1 M NaNO^ 
solution at 25°C 
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PARCALC TAFEL MENU 

EXP. NAME:TAP RDE 12 CU« DATA:191 
TECHNIQUE:TAFEL CE VS 13 

RESULTS 

E(I=0) (MV) 47.79 

CATHODIC TAFEL (MV) 371.89 

ANODIC TAFEL (MV) 199.13 

I-CORR (UA/CMTZ) 9562.46684 

CORR RATE (MPY) 4675.78 

CHI -^2 18.3 
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Figure 71. Tafel plot and Parcalc results for a-brass (80/20) 
rotating disc electrode at 100 rpm in 1 M NaNO^ + 
0.05 M CuCNO^)^ solution at 25"C 



www.manaraa.com

Table 8. Electrochemical reactions of aB-brass (60/39) in nonammoni-
acal solutions at 25°C 

^cor *cor 

Solution (jjA/cm^) 

1 M NaNO^ + 0.05 M Cu(N02)2 345.01 845.00 

1 M NaClOg + 0.05 M Cu(N02)2 299.42 2778.44 

1 M NaNO^ + 0.05 M 00(80^)2 317.54 179.05 

1 M NaCl -99.33 28.35 

1 M NaCl + 0.05 M CuCl^ 133.47 10889.63 

^Average time-to-crack. 

^No cracking. 
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- Anodic reaction Tafel Cathodlc reaction Tafel 
c (species to be slope (species to be slope 

(hrs) oxidized) (mV) reduced) (mV) 

5 Zn 50.5 NO3 54.9 

5 Zn 55.1 Cu^"*" 190.7 

5 Zn 44.0 O2 241.0 

Zn 77.5 
*2 

211.91 

NC 
Cu 
Zn 132.9 CuClg 303.3 
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[CuCPgOy)] ̂  and [Cu(P20y)2l ^ complexes which do not provide the neces

sary reducible cationic species as in the case of ammonia solution, 

where moderate corrosion current is observed and consequently SCC. Re

sults in Mattsson's solution are included for comparison. 

Table 9. Electrochemical reactions of a-brass (80/20) in nonammonlacal 
solutions at 25®C 

Solution 

cor cor 

(VIA/cm ) 

Anodic 
reaction 
(species 
to be 

oxidized) 

Cathodic 
reaction 
(species 

to be 
reduced) 

1 M NH^OH 

+ 0.05 M CuSO, 
-102.6 2333.8 

Cu 
Zn [Cu(NH3)^] 

2+ 

1 M pyrophosphate 

+ 0.05 M CuSO, 
-78 57.6 Zn 

1 M NaNO, 122.8 24.2 Zn 

1 M NaNOg + 

0.05 M Cu(N03)2 
289.7 9562.4 Zn Cu 

2+ 

Cyclic polarization measurements The cyclic polarization curves 

of aB-brass (60/39) are shown in Figures 72-79. The same features found 

before in ammoniacal and ammonium salt solutions are noticed in the 

present solutions. In NaNO^ solution, where SCC is predicted according 
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Figure 72. Cyclic polarization curve for 
aB-brass (60/39) electrode in 
1 M NaNOg + 0.05 M Cu(N03)2 
solution at 25°C 
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Figure 73. Cyclic polarization curve for 
a6-brass (60/39) electrode in 
1 M NaNOg solution at 25®C 
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Figure 74. Cyclic polarization curve for 
a3-brass (60/39) electrode in 
1 M NaClOa + 0.05 M Cu(N03)2 
solution at 25*C 
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Figure 75. Cyclic polarization curve for 
a3-brass (60/39) electrode in 
1 M NaN02 + 0.05 M Cu(N03)2 
solution at 25*C 
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Figure 76. Cyclic polarization curve for 
a3-brass (60/39) electrode in 
1 M NaNOj + 0.05 M Cu(N03)2 
solution at 25°C 
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Figure 77. Cyclic polarization curve for 
aB-brass (60/39) electrode in 
1 M NaCl + 0.05 M CuCl2 solution 
at 25°C 



www.manaraa.com

lining lllfllj lll|lll| IIIIW^ IllfHj I I IjXIj lll|HII 

• itJ iiilJ I iiliJ , ,.I,J n.liJ lulm 
- 2 - 1 0 1 2 3 4 5  

1« 10 10 10 10 10 10 10 
I (UA/CHA2) 

Figure 78. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M Nad solution at; 25*C 
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Figure 79. Cyclic polarization curve for 
ag-brass (60/39) electrode in 
1 M Na2S04 + 0.05 M CUSO4 solu
tion at 25°C 
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Figure 80. Cyclic polarization curve for a-brass (80/20) 
electrode in 1 M NaNO^ solution at 25°C 
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to the cyclic polarization curves, the corrosion current is very small. 

So, the dissolution mechanism, and accordingly SCC susceptibility, are 

excluded. On the other hand, the lack of the required features in NaNO^ 

solution, where SCC occurred, supports the adsorption model mechanism. 

In NaCl + 0.05 M CuClg solution, general corrosion takes place due to 

the high corrosion rate. 

The cyclic polarization curves for a-brass (80/20) in Mattsson's 

ammoniacal and sodium nitrate solutions are shown in Figures 39 and 80. 

The same features mentioned before can easily be noticed in the first 

curve, where cracking was also observed. The absence of these features 

in the case of sodium nitrate is supported by the fact that no SCC was 

observed in this solution. 

Surface analysis tests 

A sample of the optical microscopy results of aS'-brass (60/39) in 

different solutions is shown in Figures 81,82. 

The results show the following features: 

2+ 
1. In solutions containing Cu ions, wide branching cracks 

are observed, indicating more dissolution in these solu
tions (Figure 81). It should be noted that the lowest 
time-to-crack values are observed in these solutions. 

2+ 2. In Cu -free solutions, narrow and nonbranching cracks 
are observed (Figure 82).. 

Generally, the transgranular cracking mode is observed in all nonam-

moniacal solutions under test, which is in accordance with previously 

reported results, and also with the fact that the solutions are non-

tarnishing. 

The cracking of brass in nitrite, nitrate, chlorate, and sulfate 
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Fig. 81. Optical micrograph of transgranular 
SCC on ag-brass (60/39) loop sample in 
1 M NaClOg +0.05 M CuSO^ solution at 
25° C 

Optical micrograph of transgranular SCC 
on oP-brass (60/39) loop sample in 1 M 
NaClOg solution at 25° C 
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solutions was reported before [60,61,66,67]; however, at least one of 

the experimental conditions (open circuit potential and static load 

technique) was always missing. Under these conditions, a-brass (80/20) 

proved again to be more resistant to SCO than otg-brass (60/39). The 

immunity of a-brass in nonammoniacal solutions tested can be attributed 

to either general corrosion or very little dissolution rates. 

In a$-brass (60/39), the similarity between the results obtained 

in ammoniacal and ammonium salt solutions and those obtained in non

ammoniacal solutions is striking. The SCC results (in the sense of 

occurrence or nonoccurrence) are the same in all tested ammonium salts 

and nonammoniacal solutions having the same anion except the nitrate 

anion, with higher time-to-crack in the case of nonammoniacal solutions. 

The cracking in ammonium nitrate, and not in sodium nitrate solution, 

and the shorter time-to-crack in ammonium salt solutions than in non-

•f 
ammoniacal solutions, emphasize the fact that NH^ ion has a stimulating 

effect in SCC. On the other hand, the cracking in cupric nitrate solu-

2+ 
tion supports the importance of Cu ions which furnish an efficient 

cathodic reaction and consequently SCC in most of Cu^^-containing solu

tions. Consequently, the previously reported cracking in nitrate and 

sulfate solutions was not proved in the present work, and electrochemical 

results show very little dissolution in these solutions. In chloride 

solutions, no cracking was observed due to the same reasons in ammonium 

chloride solutions, as supported by electrochemical results. The re

sults support a SCC dissolution mechanism (except in cases where cor

rosion rate is very low which will be discussed later), and preferential 
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zinc dissolution, which is to be expected in solutions not leading to 

+ 2+ 
Cu - or Cu -complexes. Moreover, SCC can be predicted using the cyclic 

polarization curves as was discussed before for the case of ammoniacal 

and ammonium salt solutions. 

Pure Copper in Aqueous Solutions 

Stress corrosion cracking tests 

Pure copper (99.9%) loop specimens were tested for cracking in two 

groups of solutions. The first group includes solutions which were re

ported in literature to cause SCC of pure copper. Table 10 summarizes 

the results of the present work along with the previously reported re

sults. 

Table 10. SCC results of pure copper in various aqueous solutions at 
25°C (first group) 

Solution Present study Previous work 

15 N NH^OH + 2.5 g/L of Cu NC® F^ [73] 

0.4 N CuSO^ M NF^ [76] 

1 M NaNOg fl F [77] 

0.03 M NH^OH tl F [78] 

0.05 M NH^OH It F [78] 

0.07 M NH^OH It F [78] 

^No cracking. 

^Failure. 

^No failure. 
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It is noteworthy that an ag-brass (60/39) sample, tested in the 

first solution, suffered cracking after only two hours. 

The second group includes some of the solutions tested before in 

the case of ag-brass (60/39). Although brass was found to crack in 

most of these solutions, pure copper showed no sign of cracking after 

more than two weeks. 

Results for both pure copper and aB-brass (60/39) are summarized 

in Table 11. The present study shows that pure copper is not suscepti

ble to see in different tarnishing and nontarnishing solutions. The 

results support the previously reported conclusions that pure metals 

are not susceptible to SCC. The failure reported before may be due to 

general corrosion [73,78], or the use of dynamic load technique [77]. 

Electrochemical tests 

Corrosion potential measurements In noncomplexing solutions, 

the corrosion potential is close to that predicted from the Nernst equa

tion, indicating that little copper dissolution occurs in these solu

tions. On the other hand, in complexing solutions, the corrosion poten

tial is more noble than the predicted pure copper potential according 

to the potential/pH diagrams, indicating more dissolution of copper in 

these solutions. The corrosion potentials of pure copper, along with 

ag-brass (60/39) are shown in Table 11. It is noteworthy that the cor

rosion potential of brass is less noble but close to that of pure cop

per, which is in accordance with the fact that the behavior, of brass 

alloys with copper content higher than 40%, approaches that of pure 
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Table 11. SCC results and corrosion potentials of copper and a3-brass 
(60/39) in various aqueous solutions at 25°C (second group) 

See results ^cor 
Solution Pure Cu Brass Pure Cu Brass 

1 M NH^OH + 0.05 M CuSO^ NC^ C^ -83 -129 

1 M NH^NOg + 0.05 M Cu(N03)2 NC c 299 292 

1 M (NH^)2S0^ + 0.05 M CUSO^ NC c 267 257 

1 M (NH^)^^^ + 0.05 M CuSO^ NC NC 26 -38 

1 M NH^Cl + 0.05 M CuClg NC NC 127 105 

1 M NH.OH 
4 NC C -202 -233 

1 M NaNOg + 0.05 M Cu(N02)2 NC C 302 303 

1 M NaNOg + 0.05 M Cu(0^3)2 NC C - 329 

1 M NaClOg + 0.05 M Cu(N02)2 NC C 322 294 

1 M NaCl +0.05 M 0.05 M CUCI2 NC NC - 102 

^No cracking. 

^Cracking. 

copper more rapidly than it approaches that of pure zinc [125]. 

Tafel plots results Tafel plots of pure Cu, in some of the 

solutions investigated, are shown in Figures 11, 16, 64, 66, and 83. 

In solutions where copper potential is close to Nernst potential, i^^^ 
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PARCALC TAFEL MENU 

EXP. NAMEITAFCU AMCAR 2* 
TECHNIQUE:TAFEL 

DATA:90 
[E VS I] 

RESULTS 

E(I=0) (MV) -185.18 

CATHODIC TAFEL (MV) 167.24 

ANODIC TAFEL (MV) 93.14 

I 

u 

I-CORR (UA/CM-^2) 5397.97917 

CORR RATE (MPY) 2488.19 
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Figure 83. Tafel plot and Parcalc results for pure copper electrode 
in 1 M (NH4)2C03 + 0.05 M CUSO4 solution at 25*C 
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2+ 
is equal to the exchange current of the reaction Cu—•Cu + 2e. 

The results show more dissolution of copper (than zinc) in complexing 

solutions, which is in favor of selective dissolution discussed before. 

Cyclic polarization results The cyclic polarization curves 

for pure copper in some of the solutions are shown in Figures 84-87. 

The curves have the same features required before to predict SCC, in 

spite of the absence of cracking in all of the solutions. This in

dicates that cyclic polarization curves (in the present form) can't be 

used to predict SCC of pure copper as it was used for brass. 

In conclusion, it is believed that the previously reported SCC 

of pure Cu [73,77-78] was probably due to general corrosion [73,78] 

as discussed by Uhllg and Duqette [75], commercial impurities [78] or 

application of dynamic load techniques [77]. 

Stress Corrosion Cracking Mechanisms 

The present results of SCC, electrochemical, and surface analysis 

tests indicate the presence of more than one mechanism for transgranular 

SCC of brass in nontarnishing solutions. 

Dissolution mechanism 

This mechanism applies In aqueous solutions where the corrosion 

2 rate has an intermediate value (0.1<i <5 mA/cm ). Preferential dls-cor 

solution of zinc takes place in noncomplexlng solutions, while prefer

ential copper dissolution occurs in complexing solutions, as evidenced 

by electrochemical and surface analysis tests. The shape of cyclic 

polarization curves supports the assumption that pit formation is the 
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Figure 84. Cyclic polarization curve for 
pure copper electrode in 1 M 
(NH,)2S04 + 0.05 M CUSO4 solu
tion at 25°C 
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Figure 85. Cyclic polarization curve for 
pure copper electrode in 1 M 
(NH4)2C03 + 0.05 M CUSO4 solu
tion at 25°C 
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Figure 86. Cyclic polarization curve for 
pure copper electrode in 1 M 
NH^Cl + 0,05 M CuCl2 solution 
at 25°C 
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Figure 87. Cyclic polarization curve for 
pure copper electrode in 1 M 
NaN03 + 0.05 M Cu(N03)2 solu
tion at 23°C 
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initiation stage in SCC process. Recently, Gouda et al, [126] supported 

the anodic dissolution model, and concluded that the SCC of a-brass 

(in nonammoniacal solutions) is critically influenced by the oxidizing 

power of the solution. In the present work, the time-to-crack in non

ammoniacal solutions decreases with the increasing oxidizing power of 

the solution. 

The stress corrosion cracking in nontarnishing solutions will 

be initiated when very narrow zones of stressed "disarranged metal" 

dissolve anodically in preference to stressed "well-ordered metal" to 

produce sub-microscopic fissures which act as local stress raisers [12]. 

The grain boundaries represent regions of highest dislocation density 

in strained alloys containing cellular dislocation structures (Zn<18%); 

thus, the SCC mode is intergranular. On the other hand, when planar 

dislocation arrays are formed, the dislocation pile-ups represent the 

paths of greatest dislocation density (Zn>18%), and the SCC mode is 

transgranular, which corresponds to the present case of ag-brass (60/39) 

in nontarnishing solutions. The dislocation pile-ups will be the anode 

in the dissolution process while other surrounding surfaces will be the 

cathode. The existence of a large unstressed area next to a small 

stressed one favors the advance of the crack. Moreover, stress intensi

fication at the crack tip increases the atomic separation and conse

quently reduces the activation polarization energy required for anodic 

dissolution. The corrosion at the crack tip will be favored over attack 

elsewhere. The mechanism shows clearly the importance of dissolution 

process for both initiation and propagation stages. 
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Brittle mechanical failure by adsorption model 

This mechanism applies in solutions where the corrosion rate is 

too small to satisfy the dissolution mechanism requirements, as in ni

trite and ammonium nitrate solutions. The transgranular SCC of brass 

in nitrite solution was studied by several authors [69-71]. Gouda et 

al. [127] and Jones [125] found that nitrite is a corrosive inhibitor 

for zinc dissolution. Accordingly, SCC in nitrite solution cannot oc

cur by any mechanism based on electrochemical dissolution [128]. The 

present detailed study of SCC of ag-brass (60/39) in ammonium nitrate 

solution reveals the following features: 

1. Very low corrosion rate, as proved by Tafel plot 
calculât ions 

2. Lack of conditions required for cyclic polarization 
curve to predict SCC by a dissolution mechanism 

3. Slight change in the SCC fracture surface, as revealed 
by EDAX results 

These features may be in favor of the brittle mechanical failure mechan

ism. Failure can be attributed to the adsorption model, where specific 

species adsorb on and interact with strained bonds at the crack tip » 

causing a reduction in bond strength and permitting brittle fracture 

[45]. The adsorption model was adopted strongly by Sircar et al. [129], 

who suggested that cracking pattern is dependent mainly on the situation 

existing at the surface or the interfaces of a corroding material and 

the environment, and that the conventional reactions of dissolution are 

of secondary importance in the cracking process, while adsorption plays 

a major role. Moreover, the production of NH^ ions, by cathodic reduc
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tion of nitrite and nitrate anions, was reported before [69,130]. Con

sequently, it can be assumed that NH^ ions are the specific species be

ing adsorbed on the surface during the SCC process. 

Finally, it should be noted that there is no sharp boundary be

tween the two mechanisms discussed above. Instead, there might be a 

region (of corrosion rate values) where a conjoint action of both mechan

isms can be assumed. 
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SUMMARY 

The stress corrosion cracking (SCC) susceptibility of pure copper 

and two brass (copper-zinc alloy) compositions (80/20 and 60/39), was 

studied in several ammoniacal and nonammoniacal aqueous solutions at 

open circuit potential applying a constant load technique. The SCC 

tests, using tensile stress and loop specimens, showed pure copper to 

be immune in all solutions tested, the a3-brass (60/39) alloy to be 

most susceptible to SCC, and the (80/20) alloy to have intermediate 

SCC susceptibility. The electrochemical tests (corrosion potential 

and Tafel plots) have been utilized to prove the validity of the dis

solution mechanism for the SCC propagation in solutions with Interme-

2 diate corrosion rates (~0.1<i <""5 mA/cm ). The electrochemical tests cor 

were also used to predict the preferential dissolution of zinc (dezinci-

flcation) in noncomplexing solutions, and the higher dissolution of 

copper (than that of zinc) in complexing solutions. The formation of 

intermediate cuprous complexes was detected using a rotating ring disc 

electrode (RRDE) composed of a brass (80/20) disc and platinum ring, 

in ammonium chlorlde-cupric chloride solution. Moreover, a mathematical 

model for the role of cuprous complexes in copper corrosion was de

veloped for the proposed autocatalytic oxidation mechanism. Finally, 

the predictions of dezincifIcatlon and decuprificatlon were confirmed 

by energy dispersive x-ray analysis (EDAX). The dissolution mechanism 

was further supported by the scanning electron microscopy (SEM) results 

which showed the absence of any true cleavage features on the SCC frac-
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ture surface In ammoniacal copper sulfate solution (Mattsson's solution) 

at pH=10.9. 

At very low corrosion rates, the stress corrosion cracking (if 

present) is assumed to operate by the brittle mechanical fracture mech

anism in solutions where ammonium ions (NH^) can be generated, as in 

cathodic reduction of nitrite solution. The cracking is assumed to , 

propagate by adsorption and interaction of these ions with the strained 

bonds at the crack tip, causing reduction in bond strength and per

mitting brittle fracture. 

The cyclic polarization technique proved to be an efficient tool 

to predict the SCC of brass (but not of pure copper) alloys. The hys

teresis loop, in cyclic polarization curves, indicates the formation 

of surface pits which represent the initiation stage in the SCC process. 

The optical microscopy results show that the cracking mode, in all 

solutions, is transgranular, which is expected for brass alloys with 

zinc content >18% in nontarnishing solutions. 
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CONCLUSIONS 

Pure copper Is Immune to stress corrosion cracking (SCC) in sev

eral ammoniacal and nonammoniacal solutions, and the susceptibility 

of brass to SCC increases with increasing zinc content. 

Corrosion potentials alone are insufficient to identify, predict, 

or monitor SCC; complete Tafel plots generating not only corro

sion potentials but also anodic and cathodic polarization curves, 

are useful in estimating the probable cathodic and anodic reac

tions at the electrode surface. 

Preferential dissolution is a requirement for SCC In nontarnishing 

solutions. Preferential zinc dissolution (dezincification) occurs 

in noncomplexing solutions, while higher dissolution of copper 

(than that of zinc) occurs in complexlng solutions. These con

clusions were predicted by the electrochemical results, and further 

confirmed by the surface analysis (EDAX) measurements. 

Stress corrosion cracking, at open circuit potential in nontarnish

ing solutions, can be predicted from cyclic polarization measure

ments. 

Stress corrosion cracking of a3-brass (60/39), in nontarnishing 

solutions, is transgranular. No signs of true cleavage features 

were observed in ammoniacal copper sulfate solution (pH=10.9) 

which is in accordance with dissolution mechanism. 

A model is presented to show the role of catalytic oxidation of 

cuprous complexes in brass corrosion. 
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7. Two see mechanisms are assumed to operate under different condi

tions. The dissolution mechanism is supposed to operate when the 

corrosion rate is moderate. The brittle mechanical failure due to . 

adsorption phenomena is assumed when the corrosion rate is very 

low and the generation of ammonium ions is possible. 
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APPENDIX A. 

THEORETICAL BASICS OF POTENTIAL/pH 

DIAGRAM CONSTRUCTION 

According to Pourbaix [7], chemical reactions are written in the 

form: Zv^M^=0, where the stoichiometric coefficients, v, are positive 

for the reacting substances, M, on the right-hand side of the reaction 

equation and negative for those on the left-hand side. Similarly, the 

electrochemical reactions are written in the form; + ne =0. 

The condition for thermodynamic equilibrium of a chemical reaction is: 

= 0, where + RT ln(M^) 

chemical potential of reacting substance, 

: standard chemical potential of 

(M^); activity or fugacity of 

So, 

Zv^TJ^ = 0 = Zv^ii°+RT Ev^ln(M^) 

= + 4.575 T Ev^ log (M^) 

So, 

Ev 
Ev^Vl» 

1 ^^i^ 4.575T 

if Ev^ log (M^) = log K, then: log K = ^ T 

At T = 298.1°K: 
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log K = 1363 ••• (1) 

where standard chemical potential at 25®C, in cal. 

K: equilibrium constant. 

Similarly, for electrochemical reaction, the condition for thermodynamic 

equilibrium will be; 

0 0591 ^^l^i 
îv^iog(M^) , E; » (2) 

where = equilibrium potential of the reaction 

E° = standard equilibrium potential at 25°C. 

To construct the potential/pH diagram of a metal (e.g., copper) in some 

system (e.g., water), all the possible reactions of copper with water 

are written down, then the condition for thermodynamic equilibrium of 

each reaction is expressed in the form of equation (1) or (2) according 

to the reaction nature. Substituting the numerical values of and E°, 

the derived equations will be expressed in potential and/or pH terms 

and can be represented graphically on a potential/pH diagram. 
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APPENDIX B 

CHEMICAL REACTIONS OF Cu-NĤ -Ĥ O 

AND Zn-NHg-Ĥ O SYSTEMS [6] 

Copper. The basic standard electrode potentials and the equilibrium constants 
Bsed in the calculations are: 

Cu*+ + 2e- = Cu; £h* = 0 337 V 

Cu+ + e- = Cu; £e° = 0 521 V 

Cu*+ -r e- = Cu*; £h® = 0-153 V 

[NH/] 
5 50 X 10-" 

[Cu+][NH,p 

ICu(NHa),+] 
1 38 X 10-" 

lCu»> l̂lNH3Î« 

[CuCNHaY+l 
2 35 X 10-» 

(Cu*][OH-] = 1 26 X 10-» 

lCu»+]IOH-p = 1 52 X 10-» 

lCu'+l[S04*-f 1 30 X 10-" 

From these constants the following equilibrium equations are obtained: 

(I) Cu'« + «- = Cu+ 

= 0 153 + 0 0591 log^^ 

12) Cu*^ + 2NH4+ + e- = Cu(NH,)2+ + 2H+ 
rcu-+i 

£g = -0 300 4- 0118 log [NH4+] -h 0118 pH + 0 0591 log 

(3) Cu(NH,V+ + 4H+ = Cu*" + 4NH/ 

pH = 610 -  leg [NH/l  -  025 

(4) Cu(NH,V^ + 2H+ + e- = Cu(NH,),+ + 2NH.+ 

JEW = 1143 -  0118 log ~ 0118 pH + 0 0591 IogE! i2^W] 
ICU(NHj)2*] 

(5) Cu(NH^:* + 2H+ = Cu+ + 2NH/ 

pH = 3 8 J - log INH.<1 - 0 50 log 

(6) Cu*+ + 2e- = Cu 

£b = 0-337 + 0-0295 log [Cu'+] 

(7) Cu'* + O-SHjO + e- = 0-5CujO + H+ 

£B = 0-206 -f 0 0591 pH + 0 0591 log [Cu*+] 
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(8) CuCSO^WOH),.^ + 1-5H^ = Cu«+ + 0 25SO/- 4- 1-5H,0 
pH = 3-41 — 0-67 log ICu'-^J - 0-17 log [SO/-] 

(9) Cu(SO«)o.„(OH),4 = CuO + 0'25S04*- + 0-5H+ + 0-5HjO 
pH = 6-14 + 0 50 log [SO/-] 

(10) Cu(SOt)o.u(OWi'S + 4XH/ = Cu(NHaV+ + 0-25SO«»- + 2-5H* + 1'5H,0 
pH = 7 73 - 1 6 log INH/3 + 0-40 log [Cu(NH^J+] + 0-10 log [SO/'] 

(11) CuO + 4NH/ = CuCNHaV*- + 2H+ + HjO 
pH = 811 - 2 log [NH/] + 0-50 log [Cu(NHaV] 

(12) CU(S04WOH)i.6 + 0-5H- 4-e- = 0-5CujO + 0-25SO/- + H,0 
£g = 0«449 — 0'0295pH — 0-0149 log [SO^*-] 

(13) CuO + H+ 4- c- = 0-5Cu,0 4- 0-5HjO 
£b = 0-690 - 0-059 IpH 

(14) 0-5Cu,0 + -f e- = Cu + O^SHjO 
£a = 0-468 - 0 059IpH 

(15) 0-5Cu,0 + 2XH/ = Cu(NH3)2+ 4- + 0'5H,0 
pH = 8-56 - 2 log INH.+] 4- log [Cu(NHjV] 

(16) Cu(NHs)î-^ 4- 2H+ 4- e- = Cu 4- 2NH/ 
fg = 0-974 - 0-118 log INH4+] - 0-118pH 4- 0-0591 log [Cu(NH,)z+] 

Zinc. The basic standard clecirode potential and the equilibrium constants used 
in the calculations are; 

Zn*+ 4- 2c- = Zn; Zg" — -0-763 V 

uss—--
[Zn'*][OH-]: = 12 X 10"" 

From these constants the following equilibrium equations are derived: 

(17) Zn-^ -r 26" = Zn 
fg = -0*763 + 0-0295 log [Zn*+] 

(18) Zn(OH): 4- 2H+ = Zn'* 4- 2H,0 
pH = 5-54 - 0'50 log [Zn*+1 

(19) Zn(OH), 4- 4XH/ = Zn(NHj)/+ 4- 2H* + 2HjO 
pH = 8-48 - 2 log [NH«+] 4- 0-50 log [Zn(NH,Y+] 

(20) Zn(OH), 4- 2H+ 4- 2e- = Zn 4- 2HjO 
£g = -0*436 - 0-059IpH 

(21) Zn(NH3)/+ 4- 4H+ 4- 2e- = 2o + 4NH.+ 

Ta = 0-065 - 0 118 log [NH/J - 0-118pH 4- 0-0295 log 
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APPENDIX C. 

STABILITY CONSTANTS OF Cu"^, AND Zii*^ IONS 

IN VARIOUS COMPLEXING SOLUTIONS AT 25*C [118] 

Ligand log (stability constant) 

Cu+ Cu-^ Zn"^ 

NH^ = 8.74 B^ = 14.14 B^= 9.58 

PgOy* 6% = 26.72 3% = 11.87 6^= 7.24 

CN~ B, = 27.30 B, = 25.00 B, =16.90 
4 4 4 

SCN" B^= 10.09 B^= 6.52 B^= 1.30 

where : 

B„ = 
[(MLg)] 

m-2n 

M = metal ion with m charge 

L ̂  = ligand with n charge 
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APPENDIX D. 

MATHEMATICAL SOLUTION OF THE DIFFERENTIAL EQUATIONS OF 

Cu"*" - AND Cu"*^-COMPLEXES GROWTH RATES 

] = 4R _ 4k [Cu"*"] + Zk.ECu'*^] (1) 
at X a j 

where [Cu^] = [Cu"*^] = 0 , when t=0. 

Let X be the Laplace transform of [Cu^], and 

y be the Laplace transform of [Cu ], then 

4R, 
Sx 

X = • 
s[s^ + (kg+4kg)s - 4kgk^] 

16 k R, a 1 
y 

s[s + (kg+4k^)s - ̂ kgk^] 

Define a and 6 by 

(S-a)(s-3) = + (kg+4k^)s - ̂ ^3^^ 

(2) 

= - 4k^x + Zk^y C3) 

Sy = 4k^x - k^y (4) 

Solving equations (3) and (4) for x and y, then 

C5) 

(6) 
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i.e., 

Ot « g 
- = _ i [k_ + 4k ±/(k-+4k^)^ + 16k,k 
p 23 â 3â 3â 

4k 
let u = -r— , then 

3 

ot o 
a  =  — [ 1  +  u ± / l + 6 u + u  ( 7 )  
p ^ 

and 

4R^^(s+kg) kg (a+kg) (g+kg) 

* ~ s(s-a)(s-3) ^ a(a-3)(s-a) B(3-ot) (s-3)^ 

y ' s(s-a)(s-6) -

11 1 
= 16 k^Rj_[^ + a(a_g)(g_a) + B(B_a) (s-3)^ 

therefore, inverting the Laplace transformations, 

ko (a+k-)e"~ (3+k_)e'^*^ 
[Cu ] = 4R^[^ + a(a-B) + e(B-a) ^ 

1 at Bt 
[CU ] . 16 + SkPw + gTKT 

using 

e»C . 1 + at + + 
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Bt and similarly for e , then 

[Cu^] = 4R^[t + Y (a+0+k^t^+ ...)J « (12) 

[Cu"^] = 8k^R^[t^ + j(cH-B)t^+ ...] (13) 

i.e., [Cu^] Is dependent on t, while 

I I 2 
[Cu ] is dependent on t . 

For 

a k 

e 

we can write 

= — [1+u ±/(l+u)^+4u] 

a 
= - i k,(l-Hî)[l ±/l+ 4u 

g 2 -St- (i+u)2 

and choose 

a = ̂  k-(l+u)I /1+—« - 1] >0 (14) 
^ ^ (1-hi)^ 

g = - i k_(l+u)[ /14. + 1] <0 (15) 
^ ^ (1+u)^ 

Hence, the e*^*" terms in [Cu"*"] and [Cu"*"^] correspond to exponential 

growth; this cannot go indefinitely, so the reaction will ultimately 

become transport limited. The terms in e^^ decay exponentially and 



www.manaraa.com

167 

correspond to transients. 

Substituting the value of u in equations (14) and (15)« then 

k3 + 4k^ 

and $ = - [k3 + 4k^ + ̂ +^3 
j a 

This result can be obtained easily by assuming that; 

AV— = 1 + 

(1+u)^ (1-Hx)^ 

which is valid only if —« 1. 
(1+u)^ 
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APPENDIX E. BRIEF DISCUSSION OF ENERGY 

DISPERSIVE X-RAY ANALYSIS TECHNIQUE FUNDAMENTALS 

When an atom is bombarded by a sufficiently energetic electron 

beam, an inner shell electron is ejected. Consequently, an outer shell 

electron (of greater energy) will fill the vacancy and an x-ray, having 

the energy difference, will be released. If the ejected electron is a 

K-shell electron, and the dropping electron is an L-shell (or M-shell), 

then the emitted radiation is (or Kg) x-radiation. The x-ray energies 

(in K eV) for elements of interest in the present work are: 

Cu 8.040 8.904 9.930 0.950 

Zn 8.630 9.570 1.012 1.034 

0 0.525 

Fe 6.398 7.057 0.705 0.718 

Sn 25.191 28.467 3.443 3.662 

In the analysis results, the inner shell is mentioned next to the metal 

symbol (first column). 

For quantitative analysis, the net intensity for each peak of in

terest is compared with the intensity from a pure element and a K-ratio 

(second column), or approximate concentration, is determined. Correc

tions for stopping power (Z), absorption (A) and fluorescence (F) are 

used to obtain the final concentration, by iteration technique, accord

ing to the equation: 

C' = K ZAF 
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The process continues until the estimated concentration, 

longer improved by further iteration. 
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